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Abstract

Metabolic response coefficients describe how dynamic properties of metabolic systems - like
steady state concentrations - respond to small, time-independent changes of the kinetic pa-
rameters. We extend this concept to temporal parameter fluctuations and define spectral
response coefficients that relate Fourier components of concentration time courses to Fourier
components of the underlying parameters. The spectral response coefficients describe forced
oscillations of the concentrations and fluxes, caused by small harmonic oscillations of single
parameters. They depend on the driving frequency and comprise the relative phases and
amplitudes. To illustrate the basic idea, only first-order response coefficients for metabolic
concentrations are addressed on this poster.

Metabolic control analysis of steady states

Stable metabolic system: Each choice of the kinetic parameters (enzyme activities,
Michaelis constants, etc.) leads to certain steady state concentrations

.

p(t’) S(p), J(p)

kinetic
parameters

steady−state
variables

Expand the stationary concentrations Sl

after a parameter change ∆p:

Sl(p
0 + ∆p) ≈ Sl(p

0) +
∑

m

RS
lm ∆pm

Metabolic response coefficients (see [2]):

RS
lm :=

∂Sl(p)

∂pm

Computation:

◦ Consider the stationarity condition 0 = ẋ = Nv(x,p) vk: kinetics functions

◦ Differentiation by p yields RS = −(Nεs)
−1Nεp

with stoichiometric matrix N and reaction elasticities (εs)kl := ∂vk
∂xl

, (εp)km := ∂vk
∂pm

Spectral response coefficients

Parameter fluctuations:

Instead of parameter vectors, we now consider vectorial time courses
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Describe the time courses by their Fourier spectrum...

.

System dynamics
^

p(  )^ ωs(  )^

p(t) s(t)

analysis
Fourier
synthesis

Fourier

concentration
time course

concentration
spectrum

parameter
spectrum

time course
parameter

α

... and define
spectral response coefficients (see [4]):

RS
lm(ω, α) := δŝl[p̂](ω)

δp̂m(α)

Computation:

◦ Consider the system equation ẋ = Nv(x(t),p(t))
◦ Fourier transformation yields iωŝ(ω) = Nĵ(ω) j: fluxes

◦ Differentiation by p yields RS(ω, α) = −(Nεs − iωI)−1Nεpδ(ω − α)

◦ The spectral response coefficients are complex and frequency-dependent.
◦ They describe the response to a harmonic oscillation of a parameter.
◦ They may show resonance near Hopf bifurcations.
◦ To account for conservation relations ⇒ Restriction to independent metabolites (see [5])

Example: Glycolysis model

We start with the glycolysis model from Hynne et al. (2001) (see [3]) at a stable steady state
(low external glucose concentration Glcx0=5.0).

The storage reaction (parameter k22) is perturbed by a harmonic oscillation of frequency
α = 2π/(10 min) ⇒ Forced oscillations of all concentrations.

Spectral response coefficients of
concentrations and fluxes
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Glycolysis network (shown by nodes and straight lines).

Arrows represent the complex values of the response co-

efficients.

Temporal response to an oscillatory
perturbation (top left diagram)

0 5 10
1.6
1.8

2
2.2
2.4
2.6
2.8

∆k22

6.66

6.68
EtOH

5.702
5.704
5.706
5.708

5.71 EtOHx

5.5277

5.5278

5.5278 CNx

1.8

1.9

2 ATP

1.55
1.6

1.65

ADP 1

1.2

1.4 G6P

0.76

0.765

0.77

NADplus

0.7295
0.73

0.7305
0.731

0.7315
Glyc

0.35

0.4

0.45

AMP 0.55
0.56
0.57
0.58
0.59 DHAP

0.12
0.14
0.16
0.18

F6P

0.2932
0.2932
0.2932
0.2932
0.2933
0.2933

Glycx 0.18

0.2
FBP

0.254

0.256
ACA

0.21

0.215

0.22 NADH

0.22

0.221

0.222 ACAx

0.14

0.145 Pyr

0.08

0.085 Glcx

6.6
6.8

7
7.2
7.4
7.6
7.8

x 10
−3

Glc

0 5 10

7

8
x 10

−5

BPG

0 5 10
0.023

0.024

0.025 GAP

0 5 10
0.0114

0.0116

0.0118 PEP

. Exact solution 0th order 1st order 2nd order

Time courses for general perturbations can be computed via Fourier synthesis.

Propagation of stochastic fluctuations

Stochastical fluctuations due to small particle numbers can be described by the chemical
Langevin equation (see [1])

d
dt

x̄i(t) = Nik ak(x̄(t))+Nik

√

ak(x̄(t)) ηk(t)
x̄i: molecule numbers
ak: propensity functions
ηk: white standard noises

.

After linearisation around the mean concentrations x0, the fluctuations
can be described by virtual noise parameters with elasticities

εp := (n liters/mol)−1/2 diag(v(x0))1/2
n: average molecule number at 1 mol/liter, n liters/mol = NAΩ
Ω: system volume
NA: Avogadro’s constant

Concentration fluctuations are quantified by their spectral densities:

SS(ω) = RS(ω) RS†

(ω) = n−1 (Nεs − iω)−1N diag(v∗) NT (Nεs + iω)−1T

· liters/mol.

Example: Minimal reaction system (3 substances) with Hopf bifurcation [6]

Stable steady state in a cubic volume (3.9 nm)3 containing, on average, n = 100 molecules
of each substance ⇒ Spontaneous fluctuations of concentrations

.
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Note the resonance - below the bifurcation- near the oscillation frequency ω0 ≈ 0.75 s−1 of
the bifurcation point.

Not shown here...

Based on the same idea, it is also straightforward to compute (see [4])

•Response coefficients for fluxes

• Second-order response coefficients

•Control coefficients (1st and 2nd order)

• Summation and connectivity theorems
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