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Abstract

Metabolic response coefficients describe how dynamic properties of metabolic systems - like
steady state concentrations - respond to small, time-independent changes of the kinetic pa-
rameters. We extend this concept to temporal parameter fluctuations and define spectral
response coefficients that relate Fourier components of concentration time courses to Fourier
components of the underlying parameters. The spectral response coefficients describe forced
oscillations of the concentrations and fluxes, caused by small harmonic oscillations of single
parameters. They depend on the driving frequency and comprise the relative phases and
amplitudes. To illustrate the basic idea, only first-order response coefficients for metabolic
concentrations are addressed on this poster.

Metabolic control analysis of steady states

Stable metabolic system: Each choice of the kinetic parameters (enzyme activities,
Michaelis constants, etc.) leads to certain steady state concentrations
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Metabolic response coefficients (see [2]):
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Computation:
o Consider the stationarity condition 0= x = Nv(x,p)
o Differentiation by p yields R®> = —(Ne¢,) 'Ne,

with stoichiometric matrix N and reaction elasticities (eg)z; == g—?‘;, (€p)iom = .=

vp.: kinetics functions

Spectral response coefficients

Parameter fluctuations:
Instead of parameter vectors, we now consider vectorial time courses
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Describe the time courses by their Fourier spectrum...

System dynamics

etosse P() - S(f) e _ and define
Fourier Fourier spectral response coefficients (see [4]):
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Computation:
o Consider the system equation x = Nv(x(t), p(t))
o Fourier transformation yields ws(w) = Nj(w) j: fluxes
o Differentiation by p yields R>(w,a) = —(Ne, — iwI) " 'Ne,d(w — a)
o The spectral response coefficients are complex and frequency-dependent.
o They describe the response to a harmonic oscillation of a parameter.
o They may show resonance near Hopf bifurcations.
o To account for conservation relations = Restriction to independent metabolites (see [5])
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Example: Glycolysis model

We start with the glycolysis model from Hynne et al. (2001) (see [3]) at a stable steady state
(low external glucose concentration G1cx0=5.0).

The storage reaction (parameter ko) is perturbed by a harmonic oscillation of frequency
o = 27 /(10 min) = Forced oscillations of all concentrations.
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Glycolysis network (shown by nodes and straight lines). Exact solution 2" order
Arrows represent the complex values of the response co-

efficients.

Time courses for general perturbations can be computed via Fourier synthesis.

Propagation of stochastic fluctuations

Stochastical fluctuations due to small particle numbers can be described by the chemical
Langevin equation (see [1])
x;: molecule numbers

aj.:. propensity functions
N,: white standard noises

%fz(t) = Ni ak()_((tD—I—Nik \/&k(}_((t)) nk(t)

After linearisation around the mean concentrations x, the fluctuations
can be described by virtual noise parameters with elasticities

€p = (N Iiters/mol)_l/2 diag(v(xo))l/2

n: average molecule number at 1 mol/liter, n liters/mol = N
(): system volume
Na: Avogadro's constant

Concentration fluctuations are quantified by their spectral densities:
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SS(w) = R%(w) R¥(w) =n"" (Ne, — iw)"'N diag(v*) N7 (Ne, + iw)~

- liters/mol.

Example: Minimal reaction system (3 substances) with Hopf bifurcation [6]

Stable steady state in a cubic volume (3.9 nm)? containing, on average, n = 100 molecules
of each substance = Spontaneous fluctuations of concentrations
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Note the resonance - below the bifurcation- near the oscillation frequency wy ~ 0.75 s of
the bifurcation point.

Not shown here...

Based on the same idea, it is also straightforward to compute (see [4])
e Response coefficients for fluxes

e Second-order response coefficients

e Control coefficients (15 and 2"¢ order)

e Summation and connectivity theorems
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