
Biochemical networks with uncertain parameters

W. Liebermeister and E. Klipp

Abstract: The modelling of biochemical networks becomes delicate if kinetic parameters are
varying, uncertain or unknown. Facing this situation, we quantify uncertain knowledge or
beliefs about parameters by probability distributions. We show how parameter distributions can
be used to infer probabilistic statements about dynamic network properties, such as steady-state
fluxes and concentrations, signal characteristics or control coefficients. The parameter distributions
can also serve as priors in Bayesian statistical analysis. We propose a graphical scheme, the
‘dependence graph’, to bring out known dependencies between parameters, for instance, due to
the equilibrium constants. If a parameter distribution is narrow, the resulting distribution of the
variables can be computed by expanding them around a set of mean parameter values. We
compute the distributions of concentrations, fluxes and probabilities for qualitative variables
such as flux directions. The probabilistic framework allows the study of metabolic correlations,
and it provides simple measures of variability and stochastic sensitivity. It also shows clearly
how the variability of biological systems is related to the metabolic response coefficients.
1 Introduction

Cell simulations aspired to in systems biology [1] require
knowledge of enzyme kinetic parameters. However,
owing to a lack of measurements, measurement errors and
biological variability, most of these parameters are still
unknown or uncertain, which turns out to be a major
obstacle in large-scale cell modelling. In this situation, a
probabilistic description of the parameters can be helpful:
to assess the effects of measurement errors, to find out
which model results persist for a wide range of parameters,
and to derive probabilities for different model outcomes.
Besides this, parameter distributions can also be employed
to study the natural variability and robustness of biological
systems.

The effects of temporal random fluctuations in gene
expression [2, 3] and metabolism [4, 5] have been
studied. Here, we focus on models with static yet uncertain
parameters: the parameters are described by a probability
distribution, and the standard deviation of the resulting vari-
able distributions (their variability) reflects how strongly the
variables respond to parameter variations. (In this paper,
we use the term ‘variable’ quite generally for quantitative
model results, such as concentrations or fluxes in steady
state or as functions of time, or functions of them, such as
signal amplitudes or durations [6].) Of course, this influence
depends on the system, on the variable of interest and on the
parameter: at bifurcation points, a small parameter change
can even change the qualitative dynamic behaviour. In
other cases, parameters can have a weak influence on the
system behaviour. In fact, various biological systems
seem to have evolved robustness, that is, low sensitivity
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and thus low variability, against a typical amount of
parameter variation (see [7] and references therein) [8–10].

If the parameter variability is fairly small, the width of
variable distributions can be computed by expansion of
the variables around the mean parameter values. This
expansion has been applied [11, 12] to study the uncertainty
of control coefficients due to errors in reaction elasticities.
The variability of a variable depends on its parameter
sensitivities, the so-called metabolic response coefficients.
Variability measures based on the normalised control coef-
ficients have been proposed [13, 14], and, for larger par-
ameter variances, Monte Carlo simulations with randomly
generated parameter sets have been used to study the varia-
bility of control coefficients and other variables [10, 15].
Brown and Sethna [16] have explored parameter distri-
butions related to the likelihood function, which describes
the ability of parameter sets to explain experimental data.

In this paper, we address two practical questions arising
with the parameter distributions

(a) Sometimes, the kinetic parameters cannot be chosen
separately: they are statistically dependent, because of
thermodynamic constraints or because they depend on
another common parameter. In Section 2, we shall show
how to define parameter distributions that account for such
thermodynamic and biochemical knowledge.

(b) Later, we shall take a closer look at the expansion method:
in Section 3, we derive first- and second-order approximations
for average values and covariances, compute the distributions
of metabolites and fluxes and derive probabilities for qualitat-
ive statements, for instance, about flux directions. In Section
4, we show how the expansion method can be used for defin-
ing stochastic sensitivity measures, to quantify the control of
regulatory parameters on the variability of system variables,
and for Bayesian parameter estimation. Three illustrative
examples are presented in Section 5.

Mathematical notation: Vectors are given in bold. The
symbol ln denotes the natural logarithm. Given a vector x,
ln x is short for the vector (ln x1, ln x2, . . .)T. A log-
normal random variable x is characterised by the mean
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mln x ¼ kln xl and the variance s2
ln x ¼ var(ln x). A list of

symbols and the derivations of equations (20)–(22), (25),
(29), (31), (45) and (46) can be found in the web
supplement.

2 Distributions of the kinetic parameters

2.1 Parameter distributions

Biochemical reaction systems implement both metabolism
and signalling in cells and have been widely studied
[17, 18]. Their description comprises two parts: the stoi-
chiometric structure and the individual reaction kinetics.
Extensive data on network structures have been collected
in databases [19–22], whereas quantitative knowledge
about reaction kinetics [23] is less detailed, and kinetic
parameters can also vary strongly between experiments.

In the following, we shall assume that the stoichiometri-
cal structure of a biochemical network is known and fixed,
and the kinetic parameters (or some of them) are constant in
time but unknown, uncertain, or varying from situation to
situation. Thermodynamic constraints by experimentally
[24] or computationally [25] determined equilibrium con-
stants can limit the emerging parameter combinations.
Uncertainty can arise for different reasons

(i) a parameter value is known, but with certain
measurement errors

(ii) a value is known from a different experiment, and so
biological variability will lead to uncertainty: for instance,
enzyme activities are actively adapted to the demands of
the cell by differential gene expression; in particular,
parameters will vary within a population of cells

(iii) a parameter value is unknown, but a rough guess can
be made from the range of known parameter values of the
same type. For instance, inhibition constants in the
Brenda database [23] typically range between 1026 and
100 mM, KM values lie between 1024 and 100 mM, and
turnover numbers vary between 0.01 and 106 min21.

For modelling, we shall quantify our belief in certain
parameter values by a probability distribution, characterised
by the mean values kln pl ¼ ln p0 and the covariance
matrix1 cov(ln p) of the logarithmic parameters (working
with logarithms requires dimensionless positive quantities;
for instance, concentrations have to be divided by their unit
(moles l21)). We shall call p0 the reference parameter
values. Most results derived in this paper remain valid for
all parameter distributions of finite variance, but, to be
specific, we assume that the parameters follow log-normal
distributions.

By definition, a random variable x is called log-normal if
its logarithm follows a normal distribution. A joint log-
normal distribution of many parameters is fully specified
by ln p0 and cov(ln p). Mean and variance of the non-
logarithmic random variable x can be computed using

mx ¼ exp mln x þ
s2

ln x

2

� �
;

s2
x ¼ ðexps2

ln x � 1Þ expð2mln x þ s2
ln xÞ

The diagonal of the covariance matrix contains the
variances of the (logarithmic) parameters, and the off-
diagonal elements describe the dependencies between them.

1The covariance matrix of a random vector x defined as
cov(x) ¼ k(x 2 kxl)(x 2 kxl)T l.
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2.2 Thermodynamic constraints lead to correlated
parameters

If the kinetic parameters are statistically independent, we can
characterise each of them by the mean value kln pil and the
variance var(ln pi) of its logarithm. In general, however, par-
ameters will depend on each other: for instance, the
maximum forward and backward velocities of a reaction are
proportional to the enzyme activity and are therefore
correlated. Another source of dependencies is the equilibrium
constants, which denote the ratio of product and substrate
concentrations in thermal equilibrium. They imply a relation-
ship between the kinetic parameters that can be found by
equating the kinetics function to zero. From mass-action
kinetics with the rate law v ¼ kþ[S] 2 k2[P] follows

q ¼ ½P�=½S� ¼ kþ=k� ð1Þ

whereas, for the reversible Michaelis–Menten kinetics,

v ¼
ðVþmax=K

þ
M Þ½S� � ðV

�
max=K

�
M Þ½P�

1þ ½S�=KþM þ ½P�=K
�
M

ð2Þ

q fulfils the Haldane relationship

q ¼
VþmaxK�M
V�maxKþM

ð3Þ

To see how a known equilibrium constant leads to off-diagonal
elements in the covariance matrix, we consider a single reac-
tion S$ P with mass-action kinetics. If the rate constants
kþ and k2 are independent log-normal, the covariance matrix

covðln kÞ ¼
s2

ln kþ
0

0 s2
ln k�

 !
ð4Þ

of the parameter vector ln k ¼ (ln kþ, ln k2)T is diagonal,
and the equilibrium constant q ¼ kþ/k2 is a log-normal
random variable. Prescribing a value for q, on the other
hand, implies a linear relationship between ln kþ2 ln k2 ¼
ln q, and the covariance matrix becomes

covðln kÞ ¼
s2

ln k s2
ln k

s2
ln k s2

ln k

� �
ð5Þ

where sln k
2 ¼ s2

ln kþ
¼ s2

ln k2
. Note that the two parameters

ln kþ and ln k2 must have the same variance, although,
experimentally, their values might be determined with
different accuracies.

Accounting for (1) is important not only if the equilibrium
constants are known, but also to fulfil the Wegscheider con-
dition for metabolic networks: the product of equilibrium con-
stants over each closed path in the network must be equal to
one. The reason for this is that the equilibrium constant q is
related to the difference of the Gibbs free energies by

q ¼ e�bDg ð6Þ

Dg is the free energy difference between products and sub-
strates (measured in J mole21), the equilibrium constant q is
measured in l mole21, b ¼ (kT )21, T is the absolute tempera-
ture, and k � 1.38 � 10223 J K21 is Boltzmann’s constant.

An independent choice of the kinetic constants would
correspond to statistically independent equilibrium
constants and thus violate the Wegscheider condition.

2.3 The dependence graph

We shall now construct parameter distributions that are
consistent with thermodynamic and other knowledge: prac-
tically, we compute the mean values and covariance matrix
of all (logarithmic) kinetic parameters in a biochemical
IEE Proc.-Syst. Biol., Vol. 152, No. 3, September 2005



network. The basic idea is to express the kinetic parameters
(e.g. rate constants) by other, underlying parameters (e.g.
equilibrium constants) until we reach a set of basic par-
ameters that can be chosen independently. For instance, to
fulfil the Wegscheider condition, we may choose indepen-
dent random values for the Gibbs free energies and use
them to compute the enzyme kinetic parameters.

The dependencies and constraints among the different
types of parameter can be depicted in an acyclic dependence
graph. An example is shown in Fig. 1: parameters with
incoming arrows are computed from their ‘parent’ par-
ameters, whereas the basic parameters (without parents) are
either exactly known or chosen independently from a log-
normal distribution. Of course, the choice of independence
assumptions may have a strong impact on the modelling
results. It is important to note the independencies are not
meant to be biological facts, but modelling assumptions,
and the dependence graph is supposed to make them explicit.

The direct dependencies depicted in the graph can be
used to compute the average values and covariance matrix
of logarithmic parameters. To illustrate this, we consider a
chemical reaction denoted by i, with mass-action
kinetics: the forward and backward rate constants can be
expressed as

kþi ¼ riui

ffiffiffiffi
qi

p

k�i ¼ riui=
ffiffiffiffi
qi

p ð7Þ

where qi is the equilibrium constant and ui is the enzyme
activity. The prefactor ri is related to the free energy
barrier of the catalysed reaction, and we can decide to
choose it independently for each reaction. The choice (7)
fulfils the equilibrium condition qi ¼ kþi/k2i, and both
forward and backward rate constants are proportional to
the enzyme activity ui.

The kinetic parameters are related in a multiplicative
fashion, which means that their logarithmic values are
additive

ln kþ ¼ ln r þ ln uþ
1

2
ln q

ln k� ¼ ln r þ ln u�
1

2
ln q

ð8Þ

or, in vector notation,

ln k ¼ ln u
1

1

� �
þ

1

2
ln q

1

�1

� �
þ ln r

1

1

� �
ð9Þ

This linear relationship makes it easy to compute the means

and covariance matrix of ln k ¼
ln kþi

ln k�i

� �
from the means

Fig. 1 Dependence graph for kinetic parameters

Arrows denote relationships between parameters: for instance, enzyme
parameters k depend on equilibrium constants, enzyme activities and
additional ratio parameters
Gibbs free energies gi can be represented by exp(gi): then all relation-
ships in dependence graph are multiplicative, and all parameters can
be consistently described by log-normal distributions. Together with
dependence coefficients characterising individual arrows (see text),
this dependence graph defines joint distribution of all parameters
IEE Proc.-Syst. Biol., Vol. 152, No. 3, September 2005
and variance of ln ri and ln ui. Moreover, if ln ri and ln ui

are normally distributed, then ln k is also normal.
Other relationships in the dependence graph can also be

stated in a linear form: the vector g (top left in Fig. 1)
contains the Gibbs free energies of all metabolites, and
Dg contains the energy differences of all reactions. They
are related by

ln q ¼ �bDg ¼ �bNT g ð10Þ

and so the energies can be modelled by a normal
distribution. The first equality stems from (6), and the
second equality relates the energy differences to the ener-
gies and the stoichiometric matrix N. For example, the
energy balance for a reaction 2A! Bþ C can be written
Dg ¼ 22gAþ gBþ gC ¼ N(gA, gB, gC)T, where N ¼ (22,
1, 1) is the stoichiometric matrix.

Sometimes, reactions are known to be irreversible
under physiological conditions, that is, the fluxes have to
be positive. However, the flux directions depend on an inter-
play between enzyme kinetic parameters and external
metabolite concentrations, so that enforcing them by a
proper choice of the parameter distribution is not straight-
forward: for practical purposes, however, we can bias the
flux direction by adding a term 2bDg�i to the logarithmic
equilibrium constant lnqi. In fact, such terms also appear
if there are cofactors (such as ATP and ADP) that contribute
to the energy balance but do not explicitly appear in the
reaction equation.

The logarithmic enzyme activities ui can be split into a
sum of terms describing base level gene expression, differ-
ential gene expression and a prefactor, which may, among
other things, account for the correlation between mRNA
expression and enzyme concentration [26, 27]. Other
relationships could be incorporated into the dependence
graph: differential gene expression can be described with
separate basic parameters accounting for extrinsic and
intrinsic noise [2, 3]. Known empirical correlations among
external metabolites [28] can also be employed. In addition,
model parameters that are not restricted by constraints
can depend on a log-normal random parameter describing
multiplicative measurement noise.

It is not always possible to obtain linear relationships
among the logarithmic parameters: instead of using (7),
the rate constants can also be parametrised by the relaxation
time t ¼ (kþ þ k2)21. In this case, we can set

kþi ¼ t�1
i qi=ðqi þ 1Þ

k�i ¼ t�1
i =ðqi þ 1Þ

where ti is log-normal, drawn independently for each reac-
tion. However, the logarithm of this formula is not linear in
qi, and thus this parametrisation is only useful if the equili-
brium constants qi are exactly known.

2.4 Computing the parameter distribution

Equation (8) states the relationship between equilibrium
constants, enzyme activities and kinetic parameters for
mass-action kinetics. For Michaelis–Menten kinetics and
other rate laws, we demand that, for each reaction i, the
parameter vector k(i) can be written in the form

ln kðiÞ ¼ aðiÞ ln ui þ bðiÞ ln qi þ cðiÞ þ DðiÞ ln zðiÞ ð11Þ

where ln z(i) is a vector of independent standard normal
random variables. The dependence coefficients in the
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vectors a(i), b(i), c(i) and in the matrix D(i) follow from inde-
pendence assumptions and from the kinetic law. Possible
choices for some common rate laws are listed in
Appendix 1.

To compute the parameter distribution for the entire
network, we merge all k(i) into a large vector k.
Accordingly, a(i), b(i) and D(i) are merged into block
matrices A, B and D, and the vectors c(i) and z(i) are
merged into vectors c and z. Altogether, we obtain

ln k ¼ A ln uþ B ln qþ cþ D ln z ð12Þ

For instance, the block matrices for a system of two
reactions read

ln kð1Þ

ln kð2Þ

 !
¼

að1Þ

að2Þ

 !
u1

u2

� �
þ

bð1Þ

bð2Þ

 !
q1

q2

� �

þ
cð1Þ

cð2Þ

 !
þ

Dð1Þ

Dð2Þ

 !
ln zð1Þ

ln zð2Þ

 !
ð13Þ

Note that (9) is a special case of (12). As ln q, ln u and ln z
are mutually independent, and cov(ln z) ¼ I (where I is the
identity matrix) the mean values and covariances of all
kinetic parameters read

k ln kl ¼ Ak ln ulþ Bk ln qlþ c

covðln kÞ ¼ A covðln uÞAT þ B covðln qÞBT þ DDT
ð14Þ

Based on (10), cov(ln q) can be expressed as b2NT cov(g)N.
Let us summarise this section: we have described

dependencies among model parameters by linear relation-
ships between their logarithms. Thereby we can easily
propagate uncertainty from independent basic parameters
to all model parameters and, at the same time, also obtain
the covariances between them.

3 Distribution of model variables

We have seen how to obtain a log-normal distribution of the
kinetic parameters p. To infer probabilistic statements about
the variables, we have to compute their distributions from
the parameter distribution. In this section, we shall first con-
sider continuous variables y, which can describe concen-
trations, fluxes and control coefficients in steady state, but
also time-dependent concentrations or signal characteristics
such as signal durations or amplitudes [6]. Later, we
examine binary variables, such as the signs of fluxes or
the relative order of metabolite concentrations.

3.1 Expansion using response coefficients

If the parameter distribution is narrow, then the variable
distributions can be approximated by a linear or quadratic
expansion around the reference parameters p0. Fig. 2 illus-
trates the linear expansion for one parameter p and one
variable y. The logarithm ln p is normally distributed with
the standard deviation s: if ln y(ln p) is linearised around
ln p0, then ln y is also normal, and the standard deviation
of ln y is sR, where R is the slope of the tangent.

This expansion also works if p and y(p) are vectors, and
the slopes of ln yi are the response coefficients defined in
metabolic control analysis [17, 29]. Let us briefly recapitu-
late a few definitions: the non-normalised response
100
coefficients are defined as the derivatives

�Rlm : ¼
@ylðpÞ

@pm

�R
ð2Þ

lmn : ¼
@2ylðpÞ

@pm@pn

ð15Þ

where yl(p) is a (stationary or time-dependent) variable of
the system. Response coefficients for stationary fluxes and
concentrations can be computed analytically from the
stoichiometric matrix and the reaction elasticities, which
describe the linearised rate laws. The normalised response
coefficients read

Rik ¼
@ ln yl

@ ln pm

¼ y�1
i

�Rikpk ð16Þ

R
ð2Þ
ikl ¼

@2 ln yl

@ ln pm @ ln pn

¼ y�1
i

�R
ð2Þ

ikl pkpl þ Rikdkl � RikRil ð17Þ

where Kronecker’s dik denotes the elements of the identity
matrix. The logarithmic variables ln y can be expanded
using normalised response coefficients

ln ylðln p0 þ D ln pÞ � ln ylðln p0Þ þ
X

m

RlmD ln pm

þ
1

2

X
mn

R
ð2Þ
lmnD ln pmD ln pn ð18Þ

plus higher-order terms. It should be noted that the
expansion of logarithmic fluxes and concentrations does
not exactly obey stationarity conditions and conservation
relationships. This problem does not occur with a linear
expansion of the non-logarithmic variables.

Expansion (18) can be used to compute the distribution of
variables. Again, we assume that the parameters have mean
kln pl ¼ ln p0 and covariance matrix cov(ln p) and that the
variables y(p) are continuous, positive and differentiable
with respect to the parameters. Also, for large ln p, jln y(ln p)j
must not increase faster than exponentially. Then, to first
order, the logarithms ln y are normally distributed with

Fig. 2 Distribution of variables approximated using linear
expansion

Solid curve: variable y as function of parameter p, both in log-scale
Probability density of ln p, with mean ln p0 and width s, is shown at
bottom. Logarithmic variable ln y(ln p) is linearly expanded around
ln p0 (straight line), and its slope is called response coefficient R.
Linearised ln y follows normal distribution with width Rs
IEE Proc.-Syst. Biol., Vol. 152, No. 3, September 2005



mean and covariances

k ln yll ¼ lnðylðp
0ÞÞ ð19Þ

covðln yÞ ¼ R covðln pÞRT ð20Þ

Note the similarity to (14): just as within the dependence
graph, uncertainty is now propagated towards the model
variables. If ln y is expanded to second order, its mean
and covariance read

k ln yll ¼ lnðylðp
0ÞÞ þ

1

2

X
mn

R
ð2Þ
lmnCmn ð21Þ

covðD ln yl;D ln ykÞ ¼
X
mn

RlmCmnRkn

ð22Þ

þ
1

4

X
mnrs

R
ð2Þ
lmnR

ð2Þ
krsðCmsCnr þ CmrCnsÞ

where C ¼ cov(ln p). The second-order term reflects the
curvature of ln y(ln p) (compare Fig. 2). It implies that, to
second order, the average model results cannot be obtained
from a single model with average parameters. In the second-
order approximation, the distribution of yl will no longer be
log-normal, but, by using (21) and (22), we can approximate
it by a normal distribution.

3.2 Change of flux sign

The log-normal distribution describes variables with posi-
tive values. For negative variables, we can simply consider
the absolute value jyij, but, if a variable can change its sign,
then a log-normal distribution may be a poor approxi-
mation. In the important case of metabolic fluxes, this
problem can be resolved: we compute the distribution of
the total flux from the joint distribution of the partial
fluxes in the forward and backward directions. Let us
denote the forward and backward fluxes by y1 and y2,
respectively. We assume that the joint distribution of their
logarithms is bivariate normal with means kln y1l and
kln y2l and covariance matrix C ¼ cov(ln y) computed
from (19) and (20) (first-order approximation) or (21) and
(22) (second-order approximation). Thus the joint prob-
ability density of y1 and y2 reads

pðy1; y2Þ ¼
1

2pjCjy1y2

exp �
1

2
ðln y� k ln ylÞT

�

� C�1ðln y� k ln ylÞ
�

ð23Þ

The probability density p(J ) of the total flux J can be com-
puted numerically by integration over all pairs (y1, y2), ful-
filling J ¼ y1 2 y2. The resulting distribution describes both
positive and negative total fluxes (compare the example in
Section 5.1). Note that this procedure is not restricted to
fluxes, but applies to all variables that can be written as a
function of two log-normal variables.

3.3 Qualitative variables: thresholds and
order relationships

Let us finally consider binary variables describing signs or
order relationships of log-normal variables (‘flux i is posi-
tive’, ‘control coefficient a is larger than control coefficient
b’). Given a parameter distribution, each of them can be
assigned a probability, and, to compute it, we can make
use of the means and covariances computed above.
IEE Proc.-Syst. Biol., Vol. 152, No. 3, September 2005
The probability that a log-normal variable y exceeds a
given threshold a . 0 is given by

Probðy . aÞ ¼ F
k ln yl� ln a

varðln yÞ1=2

� �
ð24Þ

where F(.) is the cumulative density of the standard normal
distribution. Likewise, we can compare two variables: for
instance, consider again the forward and backward flux
velocities y1 and y2 of a chemical reaction. If the vector
ln y ¼ (ln y1, ln y2)T follows a bivariate normal distribution
with mean kln yl and covariance matrix cov(ln y), the
probability for a positive total flux is given by

Probðy1 . y2Þ

¼ F
k ln y1l� k ln y2l

ðvarðln y1Þ þ varðln y2Þ � 2 covðln y1; ln y2ÞÞ
1=2

� �

ð25Þ

Likewise, we obtain

Probðy1=y2 . aÞ

¼ F
k ln y1l� k ln y2l� ln a

ðvarðln y1Þ þ varðln y2Þ � 2 covðln y1; ln y2ÞÞ
1=2

� �

ð26Þ

which can be seen by replacing y2 by a y2 in (25). Formulae
(25) and (26) hold for all kinds of log-normal variables.

4 Further applications of linear expansion

Equation (20) constitutes a simple relationship between
parameter distributions, response coefficients and variable
distributions. We shall now exploit the linear expansion to
derive formulae for the variabilities and sensitivities of
model variables. In addition, we shall study, within the
same approximation, how observations of the model
variables can be used to update a parameter distribution.

4.1 Contributions to variability

The width of a variable distribution can be measured by the
variance sln y

2 , which resembles previously proposed variab-
ility measures [13, 14] that are based on the normalised
control coefficients. For log-normal distributions with
variance sln y

2 , the coefficient of variation sy/kyl reads
(exp(s2

ln y) 2 1)1/2. Both variability measures depend only
on the shape of the distribution and not on the absolute
scaling of y. Equation (20) shows how individual parameters
contribute to the variability: if they are independent, then
cov(ln p) is diagonal, and (20) can be split into a sum

covðln yÞik ¼
X

m

RY
imvarðln pmÞR

Y
km ð27Þ

of variabilities caused by the individual parameters. The
same holds if certain groups of parameters are mutually
independent: for instance, let us recall (8) for the rate
constants. If equilibrium constants, enzyme activities and
random parameters are chosen independently, the total
covariance can be split into

covðlnyÞ ¼Ru covðlnuÞRT
u þRq covðlnqÞRT

q

þRr covðlnrÞRT
r

which can be computed and analysed separately. The
response coefficient matrices Ru, Rq and Rr can be easily
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computed using the matrices defined in Section 2.4: for
instance, the response to changes in the enzmye activities
is described by Ru ¼ RA.

4.2 Stochastic sensitivity

Sensitivities describe how a variable is affected by individ-
ual parameters. In a deterministic setting, only one
parameter is varied while all other parameters are kept
fixed. For small parameter variation, sensitivity is captured
by the response coefficients R. In the probabilistic setting,
we suggest two sensitivity measures, and, in both cases,
the first-order approximation from Section 3.1 leads to
simple formulae. Krewski et al. [30] proposed a probabilis-
tic sensitivity measure for pharmacokinetic models: Let f (x)
denote a random variable that depends on the (possibly
correlated) random variables x1, . . . , xM, called here the
parameters. The influence of a parameter xm on f, averaged
over values of the other parameters, is measured by

U ð f jxmÞ :¼ varx0m
ðEð f jxm ¼ x0mÞÞ ð28Þ

E( f jxm ¼ x0m) denotes the expectation value of f where the
value of xm is fixed, and all other parameters are drawn
from their distribution conditional on xm ¼ x0m. This sensi-
tivity measure can be rewritten as U( f jxm) ¼ var( f )2
Exm

(var( f jxm ¼ x0m)).
The Monte Carlo algorithm (also in [30]) to compute this

value is numerically demanding, but we can also approxi-
mate it using the linear expansion, yielding

U ðln ylj ln piÞ �
X

k

Rlk covðln pk; ln piÞ

 !2�
varðln piÞ

ð29Þ

This sensitivity measure does not distinguish whether a
parameter has an increasing or decreasing effect on a vari-
able. To account for the sign of the response, we can use
the covariance between the parameter and the variable as
a sensitivity measure. Under the above assumptions, it is
approximated by

covðln yl; ln piÞ �
X

k

Rlk covðln pk; ln piÞ ð30Þ

4.3 Posterior distribution

Parameter distributions as defined in Section 2 can also be
used as prior distributions for Bayesian parameter esti-
mation [31]. Posterior distributions for biochemical
models with poorly determined parameters have been
studied [16] by Monte Carlo methods. Here, we give a
simple approximative formula for the posterior distribution,
based on the linear expansion around the maximum of the
prior.

Initially, the parameters are described by a log-normal
prior distribution with mean ln p0 and covariance matrix
cov(ln p) ¼ C. Now suppose that we have collected exper-
imental data for some of the variables, contained in a vector
yexp. The elements of ln y and the rows of R, which are
computed from the mathematical model, correspond to the
same variables, in the same order. We assume that the
experimental data are given by lnyexp ¼ ln yþ sh, where
the elements of the vector h are independent standard
Gaussian random variables. This error model assumes that
the non-logarithmic data carry log-normal multiplicative
errors. If the variables are linearly approximated around
the reference parameters, we obtain an approximation for
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the posterior of ln p: it is again a normal distribution, with
mean and covariance matrix given by

k ln plpost ¼ ðs
�2RT Rþ C�1Þ

�1
ðs�2RT wþ C�1 ln p0Þ

ð31Þ

covpostðln pÞ ¼ ðs�2RT Rþ C�1Þ
�1

ð32Þ

where w := ln yexp 2 ln y(ln p0)þ R ln p0. For a large
measurement error width s! 1, the experimental data
become uninformative, and the posterior equals the prior.
On the other hand, if the prior is very broad (all eigenvalues
of C! 1), we obtain

k ln plpost � ðR
T RÞ�1RT w ð33Þ

covpostðpÞ � s�2RT R ð34Þ

5 Examples

5.1 Steady states of a small network

We study the distribution of concentrations and fluxes in a
small metabolic network. The hypothetical metabolic
network shown in Fig. 3a consists of a closed loop (S2,
S3, S5, S6) connected to external metabolites (X1, X4, X7,
X8). We assume reversible Michaelis–Menten kinetics
with a distribution of kinetic constants chosen as described
in Section 2.4. The parameter distributions were chosen as
follows: with fixed free energies and log-normal enzyme
activities with kln ul ¼ 0, sln u ¼ ln 2, the distributions of
the kinetic constants were computed as described in
Appendix 1, with mK ¼ 1, sK ¼ ln 2, mV ¼ 1, sV ¼ ln 2
for all reactions. The reference concentrations of the exter-
nal metabolites were (1, 0.7, 0.3, 0.1)T: the external concen-
trations follow independent log normal distributions around
these values, with a width of ln 2 of the logarithm.

The distributions computed from the expansion method
agree well with the results of Monte Carlo simulation.
Fig. 3 shows histograms of parameters, fluxes and concen-
trations from 1000 simulation runs: solid lines denote the
corresponding probability densities, which are exact for
the parameters and computed by second-order expansion
(see Section 3.1) for fluxes and concentrations. The distri-
butions of fluxes were computed numerically from the
log-normal distribution of forward and backward fluxes
using (23). The probabilities of flux directions are shown
in Fig. 4. The size and direction of the arrowheads in
Fig. 4a denote the probabilities of flux directions, as com-
puted by (25). Fig. 4b shows that the expansion results
(abscissa) resemble the results from 1000 Monte Carlo
runs: dots and error bars indicate the means and standard
deviations due to the finite-sample error.

5.2 Temporal behaviour of a linear reaction chain

To illustrate how the expansion method can be applied to
time-dependent problems, we consider a linear chain of
five chemical reactions

X1 ! S1 ! S2 ! S3 ! S4 ! X2

with reversible mass-action kinetics. The parameter vector p
comprises the rate constants, the constant external concen-
trations x1 and x2, and the initial values of the internal concen-
trations s1, s2, s3 and s4. As reference parameter values (in
arbitrary units), we chose a value of 1 for all rate constants
and for x1, and a value of 0.1 for x2, s1(0), s2(0), s3(0) and
IEE Proc.-Syst. Biol., Vol. 152, No. 3, September 2005



Fig. 3 Stationary fluxes and concentrations in biochemical network

a Network consists of loop of four reactions, connected to four external metabolites. Arrowheads show nominal reaction directions. Kinetic
parameters (for Michaelis–Menten kinetics) were drawn from log-normal distribution that accounts for thermodynamic constraints
b Random samples of four kinetic parameters of reaction 1 (shown as histograms) follow prescribed probability density (solid line)
c Histograms of four stationary fluxes
d Histograms of internal concentrations. Solid lines show corresponding approximative solutions. Log-normal distributions of metabolites concen-
trations were computed by expansion method ((21) and (20)). Distributions of fluxes were computed from forward and backward reactions, as
described in Section 3.2
s4(0). The parameters follow independent log-normal distri-
butions around the reference values, with widths sln p¼0.02.

Fig. 5a shows concentration time courses from 100
Monte Carlo simulation runs. Fig. 5b shows the
Fig. 4 Probabilities of flux directions in loop network (compare Fig. 3)

a Probabilities of flux directions (computed using expansion method, Section 3.3) are given by numbers and represented by sizes of arrowheads
b Results from expansion method (abscissa) and from Monte Carlo calculations (ordinate) are in good agreement. Error bars show estimation error
due to finite number of 1000 Monte Carlo runs
IEE Proc.-Syst. Biol., Vol. 152, No. 3, September 2005
corresponding distributions, estimated from a first-order
expansion. The mean curves (solid lines) result from the
reference parameters. The variability was computed from
(20): owing to the independent choice of parameters, the
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Fig. 5 Variability of concentration time courses for linear chain of 5 reactions

Model parameters (initial conditions and kinetic rate constants) were drawn from independent log-normal distribution with widths sln p ¼ 0.02
a Results of 100 Monte Carlo runs
b Distribution of concentration time courses, computed using linear expansion around reference parameters
—— Reference parameter set p0; . . . . . . Percentiles enclosing about 95% of all realisations of time courses
logarithmic concentrations have a standard deviation of

sln siðtÞ ¼ sln p siðtÞ
�1
X

k

RS
ikðtÞ pk ð35Þ

The response coefficients Rik
S (t) describe how the concen-

tration time courses depend on the parameters. They were
computed numerically as described in [32]. With the nor-
mality assumption for ln si(t), about 95% of all observations
should fall into an interval of two standard deviations
sln si(t)

around the reference value, as indicated by the
dotted curves.

5.3 Qualitative effects of differential gene
expression

Finally, we outline a potential application of metabolic
network modelling. The aim is to assess the effect of differ-
ential gene expression on the steady-state concentrations of
metabolites, while the kinetic reaction parameters are
poorly known. For the calculation, we consider two
copies of the network corresponding to the two expression
profiles: in network 1, the differential expression values
vanish, whereas, in network 2, they are given by the
(experimentally determined) differential expression profile
Dx. All other parameters p are uncertain (with reference
values p0), but considered equal for both copies of the
network. The metabolite concentration of interest is
termed y1 ¼ y(ln p, 0) under condition 1 (base expression)
and y2 ¼ (ln p, Dx) under condition 2 (altered expression).
To calculate the joint distribution of y1 and y2, we
first compute the concentrations y1

0 ¼ y(ln p0, 0) and
y2

0 ¼ y(ln p0, Dx) for both networks at the reference
values p0. Likewise, we compute the normalised response
coefficients matrix R with two rows related to ln y1

and ln y2. The logarithmic ratio ln( y2/y1) is normally
distributed with mean and variance

k ln
y2

y1
l ¼ ln y0

2 � ln y0
1 ð36Þ

cov ln
y2

y1

� �
¼ varðln y1Þ þ varðln y2Þ þ 2 covðln y1; ln y2Þ

�
X

ik

ðR covðpÞðRÞT Þik ð37Þ
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The probability that the ratio y1/y2 of concentrations
exceeds some threshold a can be computed by (26).

6 Discussion

Models with uncertain parameters are useful for predictive
simulation with uncertain knowledge, for correlation
analysis of metabolic fluctuations, Bayesian parameter
estimation, population models and for robustness studies.
They fill a gap between kinetic modelling with fixed
parameters and the algebraic methods [33–35] that study
structural system properties, irrespective of the kinetic
parameters. In this article, we addressed two practical
issues.

Firstly, the parameter distributions: we studied how to
depict and compute statistical dependencies among par-
ameters. We proposed a dependence graph for computing
the mean values and covariances of all system parameters.
It can help the modeller to make the independence
assumptions as transparent as possible, to define
parameter distributions that obey the thermodynamic
constraints, and to incorporate different sources of
uncertainty into the model. Based on multiplicative
relationships among the parameters, we derived formulae
for the joint distribution of model parameters.

Secondly, we addressed variable distributions: if the
parameter distribution is narrow, distributions of variables
can be approximated by an expansion around the reference
parameter set. The resulting formulae show a connection
between the response coefficients, which are related to the
network structure, and measures of variability [13, 14]
and probabilistic sensitivity. The expansion method
applies to both steady-state and non-steady state variables,
provided that response coefficients have been defined. For
log-normal variables, we also derived probabilities for
qualitative statements about their signs, their order and
whether they exceed certain threshold values. The second-
order expansion yields a correction term that plays a
role, e.g. in population models: experimental data from
cell populations are often fitted by a single-cell model
with the average parameters. The second-order term
shows that this will only work if the function ln y(ln p) is
approximately linear for the parameter sets in the cell
population.
IEE Proc.-Syst. Biol., Vol. 152, No. 3, September 2005



The expansion method yields a poor approximation
for variables of changing sign, which can cause problems
in the case of control coefficients [15]. For metabolic
fluxes, however, we could remedy this problem by
considering individual fluxes in forward and backward
directions.

Some of the given formulae, e.g. for the probabilities of
flux directions, are based on the log-normality of variables,
which was justified here by the linear expansion with
log-normal parameters. The log-normal distribution is a
convenient choice and consistent with the assumption of
multiplicative parameters in the dependence graph. It is
also biologically plausible, at least for quantities that
depend multiplicatively on many independent random
influences, e.g. genetic or environmental conditions.
Moreover, if a variable depends on many of the independent
parameters in the dependence graph, it will be approxi-
mately log-normal, even if the distribution of the individual
parameters is not.

Monte Carlo sampling of model results can cope
with large parameter variation and arbitrary parameter
distributions, it can be used for all kinds of variable and it
is easy to implement. A major drawback of Monte Carlo
simulation is the estimation error caused by the finite
number of simulation runs, which decreases only slowly
with sample size (O(

p
1/n)). The expansion method

requires metabolic response coefficients, and its error
depends on the parameter variance. For steady-state
variables, the system has to be solved only once for the
set of reference parameters, and the response coefficients
can also be computed analytically from the elasticities by
simple matrix operations [17]. For other variables, such as
signal characteristics, they have be computed numerically
from small variations of the parameters, but this still may
require much fewer simulations than Monte Carlo simu-
lation. Finally, even the Monte Carlo simulations can be
speeded up by use of the metabolic response coefficients:
to obtain good initial guesses for the numerical solver,
we expanded the metabolite concentrations around the
reference parameters.
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Appendix 1

Dependence coefficients for different kinetic
rate laws

To compute the parameter distribution using (14), we have
to write the parameters in the form of (11). Here we specify
coefficients a, b, c and D (omitting the superscript i) for
some common kinetic rate laws. As mentioned above, the
choice of these coefficients reflects certain independence
assumptions, which need not be justified in every case.

Irreversible mass-action kinetics: We assume that the rate
constant k ¼ ru is proportional to the enzyme activity u,
with a log-normal prefactor r. Setting ln r ¼ mrþ sr ln z,
we obtain

ln k ¼ ln uþ mr þ sr ln z ð38Þ

By comparing this to (11), we obtain the coefficients a ¼ 1,
b ¼ 0, c ¼ mr, d ¼ sr.

Reversible mass-action kinetics: We assume that both kþ
and k2 are proportional to the enzyme activity u. Hence,
we simply set the geometric mean

p
(kþ k2) ¼ ru. With

normal ln r ¼ mrþ sr ln z and the equilibrium constant
q ¼ kþ/k2, we obtain (compare (8))

ln kþ ¼ ln uþ 1=2 ln qþ mr þ sr ln z

ln kþ ¼ ln u� 1=2 ln qþ mr þ sr ln z
ð39Þ

For the vector k ¼
kþ
k�

� �
, we obtain

a ¼
1

1

� �
; b ¼

1=2

�1=2

� �

c ¼ mr

1

1

� �
; d ¼ sr

1

1

� �

General sequential reaction mechanism: We employ an
approximation for bimolecular or multimolecular reactions:
we assume that the overall reaction consists of a sequence of
n elementary binding or dissociation steps, each being
described by reversible mass-action kinetics with rate
constants kþi and k2i. In analogy to the mass-action kinetics,
we set

ln kþi ¼
1

n
ln uþ

1

2
ln qþ mr þ sr ln zi

� �

ln k�i ¼
1

n
ln u�

1

2
ln qþ mr þ sr ln zi

� � ð40Þ

and obtain

a ¼
1

n

1̂

1̂

 !
; b ¼

1

2n

1̂

�1̂

 !

c ¼
mr

n

1̂

1̂

 !
; D ¼

sr

n

diag 1̂

diag 1̂

 !

where 1̂ is a vector of size n with all elements equal to 1.

Irreversible Michaelis–Menten kinetics: The maximum
velocity is set Vmax ¼ ru, proportional to the enzyme
activity u. Further, we assume that the Michaelis constant
KM is log-normal and independent of Vmax. With normal
106
ln KM ¼ mKþ sK ln z1 and ln r ¼ mrþ sr ln z2, we obtain

ln KM ¼ mK þ sK ln z1

ln Vmax ¼ ln uþ mr þ sr ln z2

ð41Þ

For k ¼
KM

Vmax

� �
, we obtain

a ¼
0

1

� �
; b ¼

0

0

� �
;

c ¼
mK

mr

� �
; D ¼

sK 0

0 sr

� �
:

Reversible Michaelis–Menten kinetics: We choose the KM

values for the forward and backward directions indepen-
dently from the same log-normal distribution. Further, we
assume that the maximum velocities in both directions are
proportional to the enzyme activity, with a log-normal

prefactor r. Setting
p
ðVþmaxV�maxÞ ¼ ru with independent

normal ln KM
þ ¼ mKþ sK ln z1, ln KM

2 ¼ mKþ sK ln z2,
and ln r ¼ mrþ sr ln z3, we obtain

ln KþM ¼ mK þ sK ln z1

ln K�M ¼ mK þ sK ln z2

ln Vþmax ¼ ln uþ mr þ sr ln z3 þ
1

2
ðqþ sK ln z1 � sK ln z2Þ

ln V�max ¼ ln uþ mr þ sr ln z3 �
1

2
ðqþ sK ln z1 � sK ln z2Þ

ð42Þ

For k ¼ (KM
þ, KM

2, Vmax
þ , Vmax

2 ,)T, we obtain a ¼ (0, 0, 1, 1)T,
b ¼ (0, 0, 1/2, 21/2)T, c ¼ (mK, mK, mr, mr)

T and

D ¼

sK 0 0

0 sK 0
1

2
sK �

1

2
sK sr

�
1

2
sK

1

2
sK sr

0
BBBBB@

1
CCCCCA

By writing lnk according to (11), with this choice of a, b, D
and c, we can verify the Haldane relationship (compare (3))

ln q ¼ � ln KþM þ ln K�M þ ln Vþmax � V�max

¼ ð�1; 1; 1;�1Þ ln k ð43Þ

Inhibition: As inhibitors do not change the equilibrium
constant, inhibition constants can be chosen independently
of the other parameters.

Appendix 2

Variability of control, control of variability

Equations (19)–(22) do not only hold for concentrations
and fluxes, but also for other positive, differentiable func-
tions y(p) of the parameters, provided that the respective
response coefficients are known. For instance, we may be
interested in the ratio of two metabolite concentrations.
The distribution of a ratio zik ¼ yi/yk of two variables can
IEE Proc.-Syst. Biol., Vol. 152, No. 3, September 2005



be computed using the response coefficients

RZ
ikl ¼ Ril � Rkl ð44Þ

Metabolic control coefficients are defined as Cik ¼ Rik/ekk
P ,

where e ik
P is the parameter elasticity @vi/@pk and where we

assume that each parameter pk affects only the kinetics of
the kth reaction.

To compute the distribution of response and control
coefficients themselves, we have to calculate their response
coefficients first: the response coefficients of the normalised
response coefficients are given by the second-order
response coefficients. Response coefficients of the unnorma-
lised control coefficients read

RCY

ikl :¼
@

@pl

CY
ikð pÞ ¼

�R
ð2Þ

ilk ðe
P
kkÞ
�1
� �Rikðe

P
kkÞ
�2ePP

klk ð45Þ

However, as response and control coefficients can change
their signs, their approximation by log-normal distributions
is possibly restricted to small parameter variation.
IEE Proc.-Syst. Biol., Vol. 152, No. 3, September 2005
Biological variability itself can be controlled by the cell
through regulatory parameters. Let us consider a metabolic
system with two types of parameters: the noise parameter
vector p follows a probability distribution and creates
variability in variables such as metabolic concentrations
or fluxes. In contrast to that, the vector q of regulatory
parameters can be chosen to control this variability.

Let zi denote the variance of a logarithmic variable
(concentration or flux) yi due to the variability of the par-
ameters p. The response coefficients Rqj

zi between the par-
ameters qj and the variabilities zi indicate which of the
parameters are the most effective regulators of fluctuations.
They read

Rzi

qj
:¼
@zi

@qj

¼
X
mn

R
ð2Þ
imj covðln pÞmnRin

þ
X
mn

Rim covðln pÞmnR
ð2Þ
inj ð46Þ
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C Web supplement: Mathematical proofs

C.1 List of symbols

q Equilibrium constant

k+ Mass action forward rate

k− Mass action backward rate

V +
max Maximal forward velocity

V −
max Maximal backward velocity

K+
M Forward Michaelis constant

g Gibbs free energy

r prefactor in reaction velocities

u enzyme activity

N stoichiometric matrix

τ relaxation time

a,b, c,D dependence coefficients between parameters

A,B,C,D dependence matrices between all parameters

k,p parameter vector

p0 reference parameter vector

y vector of metabolic variables, e.g., concentrations, fluxes etc.

R, R(2) response coefficients, first and second order

R̄, R̄(2) non-normalised response coefficients, first and second order

R̄(t) time dependent response coefficients

C covariance matrix of lnp

U(f |x) stochastic sensitivity
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C.2 Derivation of equation (17)

R
(2)
ikl :=

∂

∂ln pk

∂ln yi

∂ln pl

= pk
∂

∂pk
(plR̄ily

−1
i )

= pkδklR̄ily
−1
i + pkplR̄

(2)
ikly

−1
i − pkplR̄ilR̄iky−2

i

= y−1
i R̄

(2)
iklpkpl + Rikδkl − RikRil (47)

C.3 Derivation of equations (19)-(22)

For small deviations ∆ln p = lnp − lnp0 from the reference parameters, the shift ∆lny of the

variables is linearly approximated by

∆lny ≈ R∆lnp (48)

where R is the matrix of normalised response coefficients computed at lnp0. The derivative

∆lnp is normal with mean 〈∆lnp〉 = 0 and covariance matrix C = cov(∆lnp), hence within the

approximation (48), ∆lny is also normal with 〈∆ln y〉 = 0 and covariance matrix

cov(∆ln y) = 〈(∆lny)(∆ln y)T〉 = 〈R(∆ln p)(∆ln p)TRT〉 = RCRT. (49)

With the second-order expansion

∆ln yl ≈
∑

m

Rlm∆ln pm +
1

2

∑

mn

R
(2)
lmn∆ln pm∆ln pn, (50)

we obtain the mean deviation

〈∆ln yl〉 =
∑

m

Rlm〈∆ln pm〉 +
1

2

∑

mn

R
(2)
lmn〈∆ln pm∆ln pn〉

=
1

2

∑

mn

R
(2)
lmnCmn. (51)
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The covariance reads

cov(∆ln yl, ∆ln yk) = 〈(∆ln yl − 〈∆ln yl〉)(∆ln yk − 〈∆ln yk〉)〉 (52)

After inserting (50) and (51) into (52), and using the third- and fourth-order central moments of

the normal distribution (see [36]), we obtain eqn. (22)

C.4 Derivation of equation (45)

RCY

ikl :=
∂

∂pl
CY

ik

=
∂

∂pl
(
∂yi

∂pk
(
∂vk

∂pk
)−1)

= R̄
Y (2)
ilk (εPkk)−1 + R̄Y

ik(
∂

∂pl
(
∂vk

∂pk
)−1)

= R̄
(2)
ilk (εPkk)−1 − R̄ik(εPkk)−2εPP

klk (53)

C.5 Derivation of equation (25)

The probability a flux in forward direction is the probability density of lny, integrated over all

values that fulfil ln y1 > ln y2, that is, (1,−1) · lny > 0. To compute this integral, we introduce z =

C−1/2(ln y−〈lny〉) (where C := cov(ln y)), which follows a standard bivariate normal distribution.

Then the probability for forward flux reads

1

2π

∫

e−
1
2
||z||2dz, (54)

where the integral runs over all values of z that fulfil (1,−1) C1/2z+(1,−1)〈lny〉 > 0. We project

z onto the vector z‖ parallel to ((1,−1) C1/2)T and obtain

Prob(y1 > y2) = Prob(||(1,−1) C1/2|| z‖ + (1,−1) 〈ln y〉 > 0)

= Φ

(

(1,−1) 〈ln y〉
||(1,−1) C1/2||

)

= Φ

( 〈ln y1〉 − 〈ln y2〉
(var(ln y1) + var(ln y2) − 2 cov(ln y1, ln y2))

1/2

)

. (55)
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where Φ(·) denotes the distribution function (cumulative density) of the normal distribution.

C.6 Derivation of equation (29)

We assume multivariate normal random variables xi forming a vector x with mean 〈x〉 = 0 and

covariance matrix C = cov(x). A random vector f is computed from x via a linear function

f = Ax. First, we compute the conditional expectation E(fl|xi = x′
i). The vector x, conditional

on a value xi = x′
i is multivariate normal, with mean x∗ maximising ln Prob(x) while xi = x′

i.

x∗ = argmaxx(−1

2
xTC−1x) while x∗

i = x′
i (56)

⇒ x∗
k = Cki(Cii)

−1x′
i (57)

f(x), conditional on xi = x′
i is also normal, with mean f(x∗). Thus

E(fl|xi = x′
i) =

∑

k

AlkCki(Cii)
−1x′

i (58)

The sensitivity measure U(fl|xi) reads

varx′

i
(E(fl|xi = x′

i)) = 〈E2(fl|xi = x′
i)〉 − 〈E(fl|xi = x′

i)〉2 (59)

where the averaging is done over all values of xi. The second term vanishes as E(fl|xi = x′
i) is an

odd function of xi, and with (58), the first term yields

〈E2(fl|xi = x′
i)〉 = (AlkCki(Cii)

−1)2〈x2
i 〉 =

(
∑

k

Alk cov(xk, xi))
2

var(xi)
(60)

Thus

U(fl|xi) =

(

∑

k

Alk cov(xk , xi)

)2

var(xi)
(61)

By setting x = ∆lnp = lnp− 〈ln p〉, f = lny, A = R, we obtain eqn. (29).

31


	1 Introduction
	2 Distributions of the kinetic parameters
	3 Distribution of model variables
	4 Further applications of linear expansion
	5 Examples
	6 Discussion
	7 Acknowledgments
	8 References
	9 
	10 Appendix 2



