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Predicting Physiological Concentrations of
Metabolites from Their Molecular Structure

WOLFRAM LIEBERMEISTER

ABSTRACT

Physiological concentrations of metabolites can partly be explained by their molecular struc-
ture. We hypothesize that substances containing certain chemical groups show increased
or decreased concentration in cells. We consider here, as chemical groups, local atomic
configurations, describing an atom, its bonds, and its direct neighbor atoms. To test our
hypothesis, we fitted a linear statistical model that relates experimentally determined loga-
rithmic concentrations to feature vectors containing count numbers of the chemical groups.
In order to determine chemical groups that have a clear effect on the concentration, we use
a regularized (lasso) regression. In a dataset on 41 substances of central metabolism in dif-
ferent organisms, we found that the physical concentrations are increased by the occurrence
of amino and hydroxyl groups, while aldehydes, ketones, and phosphates show decreased
concentrations. The model explains about 22% of the variance of the logarithmic mean
concentrations.

Key words: metabolite concentration, QSPR, molecule structure, lasso regression.

1. INTRODUCTION

Recently, metabolite concentrations in cells are gaining new interest for the purpose of diag-
nostics and cell modeling. Quantitative structure-property relations (QSPR), obtained from experimen-

tal data by machine learning, have proven useful in predicting chemical and pharmacological properties of
drug candidates (Clark and Pickett, 2000). We studied whether the QSPR approach could also be used to
explain typical physiological concentrations of metabolites. In particular, we hypothesise that the occur-
rence of certain chemical groups leads to increased or decreased physiological concentrations in cells. In
order to test this hypothesis, we applied a linear statistical model to feature vectors describing the molecular
structure of metabolites and to logarithmic concentration data. Metabolic profiling (Goodacre et al., 2004)
creates large datasets on the prevalence of metabolites in different cells or tissues, and on concentration
ratios between different samples. However, the sensitivity of high-throughput techniques such as mass
spectrometry can depend on the molecule structure. Therefore, we tested the QSPR approach with a small
but reliable dataset from a literature survey (Albe et al., 1990).
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2. DATA AND METHODS

2.1. Metabolite concentrations

Albe et al. (1990) have published a list of physiological concentrations of 41 metabolites in different
cells and tissues, obtained from a literature screen. The cell types and tissues in this study comprise the
bacterium E. coli, the yeast S. cerevisiae, the amoeba D. discoideum, red blood cells in rabbit and human,
mung bean seedlings, as well as liver, muscle, and heart tissue in rat. For each concentration reported,
either a single numerical value, an upper bound, or lower and upper bounds were given. To obtain a single
representative value in the latter two cases, we used the upper bound or the geometric mean of upper and
lower bound, respectively. All concentrations were transformed to decadic logarithms. We also studied a
combined dataset. The reported overall concentration ranges depend strongly on the cell type: to eliminate
this trend, we fitted a two-way analysis of variance model

log cik = ui + vk + w + εik (1)

where cik denotes the concentrations and the εik are independent normal random variables. The subscripts
i and k indicate the molecules and tissues, respectively. We regard ui + w as the typical logarithmic
concentration of a molecule. As many values in the data table were missing, we estimated the model
parameters by an expectation-maximization scheme (Dempster et al., 1977) with the missing values as
latent variables. Practically, this resulted in an iterative procedure: in each step, ui, vk, w, and εik were
determined by maximum-likelihood estimation, that is, from the row, column, and overall means of the
data matrix. Then the missing values were substituted by the estimates ui +vk +w. See Tables 1, 2, and 3.

2.2. Molecule feature vectors

We downloaded the molecular structures of the metabolites under study from the LIGAND data base
(Kanehisa et al., 2002) at www.genome.jp/ligand/. Each molecule structure was translated into a feature
(row) vector x = (x0, . . . , xM) as follows:

1. Each local atomic configuration (chemical group) comprising an atom, its bonds, and its neighbor
atoms, is uniquely represented by a string s: for instance, C1C1N2O denotes a carbon atom forming a
single bond to a carbon atom, a single bond to a nitrogen atom, and a double bond to an oxygen atom
(see Fig. 1). The neighbor atoms appear in alphabetical order, and hydrogen atoms and their bonds are
neglected.

2. Given the set of metabolites under study, we constructed the (alphabetically sorted, nonredundant)
list of atomic configurations sk that appear in at least two of the molecules. For each metabolite, the
element xk of the feature vector denotes how often sk appears in this molecule. Note that the different
elements of the feature vectors are statistically dependent by construction: for instance, if a carbon and
an oxygen atom form a double bond, then at least two features containing this double bond must occur
in the feature vector. Finally, we augmented the feature vector with an element x0 = 1 and an element
indicating the total number of atoms in the molecule.

2.3. Linear regression

We assume a linear model

yi = xia + σηi. (2)

between the feature (row) vector xi and the logarithmic concentration yi of the ith metabolite. The (column)
vector a contains linear weights for the chemical groups. The error term ηi is assumed to be a standard
normal random variable, independent for the different metabolites, and the prefactor σ denotes the unknown
standard deviation. The offset in the linear model is captured by the element x0 in the feature vectors. A
sparse weight vector a is estimated as follows: we choose the vector a that maximizes the score

J (a) = 1

N
||aT X − y||2 + λ

∑

k

|ak| (3)
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Table 1. Prediction of 41 Metabolite Concentrations from their Molecular Structurea

Mung Rat Rat Rat Rabbit Human Combined
E. coli S. cerev. D. disc. bean liver heart muscle RBC RBC data

# metabolites 18 30 30 12 39 36 27 22 11 49

Penalty par. λopt 0.096 0.096 0.068 0.1 0.08 0.14 0.035 0.13 0.37 0.1

Corr. coefficient 0.66 0.24 0.31 0.64 0.54 0.6 0.6 0.55 0.58 0.52

p-value 0.0013 0.096 0.047 0.013 0.00019 4.8e–05 0.00052 0.0038 0.03 6.5e–05

Total variance 1.8 4.2 4.2 3.7 4.1 4.7 5.4 4.6 2.7 3.8

Residual variance 1.3 4.8 3.8 2.3 2.9 3 5 3.3 2 2.9

Fraction explained 0.28 −0.15 0.082 0.38 0.29 0.36 0.071 0.3 0.27 0.22

Mung Rat Rat Rat Rabbit Human Combined
Feature E. coli S. cerev. D. disc. bean liver heart muscle RBC RBC data

Mean 19.9 1610 74 — 455 107 371 20.9 — 108

C−N N1C 1.61 1.24 — — 2.06 2.43 — — — 2.82

C−O O1C 1.85 — — — — — 1.23 1.19 — 1.19

Size — 0.99 1.09 1.1 1.09 1.06 1.15 1.17 1.2 1.02

C−C−C C1C1C — 1.06 1.14 — 1.24 — 1.19 — — —

C−C C1C — — — — — — 1.02 1.75 — —

C−
N
|
C−C C1C1C1N 1.85 4.96 3.78 — 1.29 — 3.03 — — —

C−
O
|
C−C C1C1C1O 0.99 — — — — — — — — —

C−
O
|
C
|
O

−C C1C1C1O1O — — — — — — 1.15 — — —

C−
O‖
C−C C1C1C2O — — 0.41 — — — — — — —

C−C−N C1C1N — — — — — — 0.93 — — —

C−
O
|
C−O C1C1O1O — — — 1.39 — — — — — —

C−
O‖
C−O C1C1O2O 3.74 0.96 — — — — 0.996 — — —

C−C=C C1C2C — — — — — — 2.52 — — —

C−N−C N1C1C 0.89 — — — — — — — — —

C−N−C N1C2C — — 0.791 1.01 — 1.09 — 1.12 — —

C−O−C O1C1C — — — 3.11 — — 0.37 — — —

P−O−P O1P1P — — — — — — 1.18 — — —

P−O O1P 1.71 — 1.67 0.59 0.66 — 1.3 — — 0.87

C−O O2C — 0.76 0.70 0.82 0.48 — 0.27 — — 0.78

C−O−P O1C1P — 0.50 0.13 — 0.28 0.16 0.043 0.074 — 0.35

aFor each of the nine species and tissues as well as for the combined dataset (columns), a penalty parameter λ was chosen to yield a minimal prediction
error in a 10-fold cross validation. For this optimal λ, explanative chemical groups along with the corresponding numerical weights were determined.
The upper table summarizes the results from the nested-loop cross-validation to assess the generalization error. For each dataset, the table contains the
number of metabolites, the optimal λ chosen, the linear correlation coefficient, and the respective p-value from the nested loop cross-validation (see
text). The fraction of variance explained is the ratio (data variance-residual variance)/data variance. For the yeast S. cerevisiae, this ratio is negative:
predictions and true values are linearly correlated, but the slope of the regression line differs from one. The lower table contains the numerical factors
10ai , where ai is the weight associated with a feature. The features are sorted by the respective weights in the combined dataset. Features selected in
neither of the datasets are not listed. RBC stands for “red blood cells.”
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Table 2. Preprocessed Concentration Dataa

Mung Rat Rat Rat Rabbit Human Combined
E. coli S. cerev. D. disc. bean liver heart muscle RBC RBC data

2-Phospho-D-glycerate — 679.71 — — 49 12.124 5 5 7 16.647
3-Phospho-D-glycerate — 161.25 — — 410 26 43.818 46 48 60.713
6-Phospho-D-gluconate — 173.21 18 0.4 27 — — 7.5 — 13.846
ADP 823 644.98 200 — 1700 1063.9 1059 500 126 410.2
ADPglucose — — — 200 — — — — — 1226.6
AMP 151 225.83 — 10.9 — 123 — 60 50 80.747
ATP 2641 1445.7 700 10.9 3535 2366.4 3075 1700 1130 1041.3
Acetyl-CoA 350 — 12 — 39 9.6 1.3 — — 11.218
Citrate 12990 700 60 — 375 164.59 — 138 — 217.07
CoA — — — — 187.35 58.652 1.7 — — 19.642
D-Erythrose 4-phosphate — — — 1.8 — — — — — 11.039
D-Fructose 1,6-bisphosphate 1900 2765.9 50 — 29.95 8.5 46 7 5 36.235
D-Fructose 6-phosphate — 650 71 8.4 86.603 19 362 11 11 60.252
D-Glucose — — 500 — 10029 762 2377 6170 — 2229.7
D-Glucose 1-phosphate — 100 20 — 16 36 65 6 — 19.784
D-Glucose 6-phosphate 801 2300 216 36 256.13 136 1033 62 27 211.94
D-Ribose 5-phosphate — — 26 4.4 — — — — — 41.432
D-Ribulose 5-phosphate — — 24 0.7 — — — 120 — 40.948
D-Xylulose 5-phosphate — — 14 — — — — — — 14.072
Dihydroxyacetone phosphate 203 330 100 0.7 44.721 12 42.895 10 12 28.637
Fumarate — — 30 — 108 105 — — — 56.958
GTP 700 — — — — — — 230 — 217.57
Glyceraldehyde 3-phosphate — 692.82 10 0.6 16 3 21 3 4 11.531
Glycerol-3-phosphate 195 — — — 451.69 78 168 — — 93.733
Glycogen — — 3420 — 36700 633 1500 — — 2821.8
Isocitrate — — — — 29 34 — — — 20.363
L-Alanine — 13229 970 — 1467.9 1563.1 — — — 1222.8
L-Arginine — 18000 — — — 394 — — — 1052.4
L-Asparagine 776.79 6245 370 — 1354.2 2166.9 — — — 578.5
L-Citrulline — 5000 — — — — — — — 1070.3
L-Glutamic acid 17363 22913 1200 — 3480 5267.6 2067 — — 2443.9
L-Glutamine — 22913 — — 6090.9 4786 — — — 3418.4
L-Lactate — — — — 2340 4790 4221.6 3810 — 3411.8
L-Lysine — — — — — 721 — — — 642.98
L-Ornithine — 7000 — — — — — — — 1498.4
L-Serine — — — — 3708 344 — — — 732.39
Malate 1184.5 — 208 — 491 268.33 129 — — 205.22
NAD 1615.5 1264.9 25 — 1097 426 310 — — 210.57
NADP — 54.772 25 — 97 5.8 — 22 — 18.817
NADPH — 86.603 30 — 433 120 — — — 56.582
NH3 — 30000 — — 678 — 349 — — 718.69
Oxaloacetate — 50 — — 10 — 26 — — 5.4127
Phosphate — 22000 9486.8 — 5251.5 4250 5500 50 — 2355.9
Phosphoenolpyruvate 165.23 30 — — 143 4 8 10 12 14.447
Pyrophosphate — — — — 17.55 — — — — 7.9234
Pyruvate 390 1600 60 — 187 100.7 56 90 — 96.251
Succinate — — 1670 — 1068 496 — — — 783.25
Uridine diophosphate glucose 1299 300 330 — 330 — 43 50 — 110.1
alpha-Ketoglutaric acid 476 1000 10 — 202 100.05 78 — — 66.741

Geom. mean 871.6 1051 106.9 8.6 349 126.8 146.6 76.6 49.2

aThe data shown are based on the concentrations (µM) as published in Albe et al. (1990). For some metabolites, ranges for the values were given. In
these cases, we used the geometric mean or the upper bound (see main text). The molecules are named according to the LIGAND database (Kanehisa
et al., 2002). RBC stands for “red blood cells.” The values for the combined dataset (right column) were extracted from the species-specific data as
explained in the main text.

where the column vector y = (y1, . . . , yN)T contains the concentrations, while the matrix X contains the
feature vectors xi as its rows. The second term stems from a lasso (L1) prior on the weight vector and
penalizes nonzero elements of a (see Hastie et al. [2001]). By the choice of the penalty parameter λ, one
can control the number of explanative features to be selected (termed here “relevant features”). To compute
the weight vector, we use the algorithm from Öjelund et al. (2001), which can be downloaded as a matlab
file at www.imm.dtu.dk/∼hoe/files/lasso.m.

The predictive power of the model was measured by 10-fold cross-validation: given a fixed penalty
parameter λ, the model is fitted to all data, except for a small test set containing about one tenth of the
metabolites. By repreating this procedure for different test sets, we assess the mean square difference
between predictions and true values for all metabolites. We can then choose an optimal penalty parameter
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FIG. 1. Molecular structure of asparagine. Left: Two-dimensional structure. Hydrogen atoms, shown by small letters
(H) are not considered in the analysis. Right: List of atomic neighborhoods in asparagine with the count numbers
shown in brackets. The neighborhood C1C1N2O (box) of one carbon atom is highlighted in the scheme on the left.
The feature vector (right) of asparagine contains the count numbers for all neighborhoods that appear in at least two
of the metabolites under study.

to minimize this mean square prediction error. To study whether the entire procedure, including the opti-
mization of λ, generalizes well on our data, we perform a nested-loop cross-validation: in a second level
of (leave-one-out) cross-validation, the whole fitting (including optimization of λ by cross-validation) is
done for the dataset without a certain metabolite i, leading to a prediction for this metabolite.

3. RESULTS

The results for the different cell types and the combined data are summarized in Table 1. For each dataset
(column), the numbers denote the factors 10ai , where ai is the weight for the ith feature. In most datasets,
larger molecules tend to show higher concentrations: for each atom in the molecule, the concentration is
increased once by a factor larger than 1. In the combined dataset, only 5 out of the 37 atomic configurations
appear as relevant: we found a positive effect for the amino group (N-C) and the hydroxyl (alcohol) group
(O-C). Concentrations are decreased by (O-P) and (C-O-P) appearing in the phosphate group, and the
carbonyl (aldehyde or ketone) group (O=C). In three of the individual datasets, however, the O-P group
showed the opposite effect, contributing to higher concentrations.

Figure 2 shows how the model predictions generalize on the combined data: true (preprocessed) concen-
trations are compared to predictions from nested-loop cross-validation (see methods). The linear correlation
between true and predicted values is about 0.52, with a p-value for nonzero correlation of about 6.5 ·10−5

(t-test against the null hypothesis of Gaussian data without linear dependence). About 22% of the data
variance (for the logarithmic concentrations) is captured by this model with relatively simple molecular
descriptors.

4. DISCUSSION

Today, one of the main obstacles in mathematical modeling of cells is the lack of parameter values.
For large-scale modeling, even rough estimates of typical physiological metabolite concentrations can
be helpful. Here we explored the hypothesis that the chemical structure has an influence on physiolog-
ical metabolite concentrations—which would QSPR turn into a tool to improve estimates of metabolite
concentrations.

A crucial point in learning quantitative structure-property relations is the choice of the molecule features:
our linear model, applied to logarithmic concentrations, assumes that each time a certain chemical group
occurs, the physiological concentration changes by a certain factor. No interactive effects between the

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2005.12.1307&iName=master.img-000.png&w=118&h=143
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FIG. 2. Prediction of 41 metabolite concentrations in the combined dataset. Predicted concentrations from nested-
loop cross-validation are plotted against the true values (in units of µM, and shown in log–log scale). The linear
correlation coefficient is about 0.52, with a p-value of 6.5 · 10−5 against the null hypothesis “no linear correlation.”

groups were considered. Larger predefined chemical groups (such as phenyl rings) could be incorporated
into the analysis, but here we restricted ourselves to an exhaustive treatment of atomic neighborhoods, in
order not to bias the study towards prior biochemical knowledge. The penalty parameter λ allows us to
select the chemical groups that are most relevant for explaing the data, and it also reduces the redundancy
caused by the correlations between count numbers of different features. We found that in some cases, small
changes in the choice of λ can lead to a different selection of correlated features (not shown). Taking this
into account, the results from the different datasets are in relatively good agreement.

Why do living cells accumulate substances with certain chemical groups? Thermodynamically, the
different enthalpies of chemical groups lead to a higher or lower equilibrium concentration. However,
metabolite concentrations in living cells are not in equilibrium, and moreover, they can be actively controlled
by uptake and catalysis of production and degradation. Cells can, for instance, actively degrade metabolites
that contain toxic chemical groups—which might also be detected by our model. For the substances from
central metabolism studied here, we favor indeed a different explanation: some groups (like the amino
group found in amino acids) are extensively used by the cell. They are transported through the metabolic
network via different metabolites—which should therefore also show increased concentrations.

The proposed model generalizes well on the metabolites studied. We thus conclude that molecules from
central metabolism show a relation between molecule structure and physiological concentrations and that
our QSPR model is able to detect it. Of course, predictions based on this training set cannot be expected
to remain valid for other classes of metabolites, such as large or toxic molecules. Nevertheless, we expect
that training with more comprehensive datasets will permit predictions for a wider range of substances.

http://www.liebertonline.com/action/showImage?doi=10.1089/cmb.2005.12.1307&iName=master.img-001.png&w=320&h=324
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