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Abstract

Metabolic response coefficients describe how variables in metabolic systems, like steady state concentrations, respond to small

changes of kinetic parameters. To extend this concept to temporal parameter fluctuations, we define spectral response coefficients

that relate Fourier components of concentrations and fluxes to Fourier components of the underlying parameters. It is also

straightforward to generalize other concepts from metabolic control theory, such as control coefficients with their summation and

connectivity theorems. The first-order response coefficients describe forced oscillations caused by small harmonic oscillations of

single parameters: they depend on the driving frequency and comprise the phases and amplitudes of the concentrations and fluxes.

Close to a Hopf bifurcation, resonance can occur: as an example, we study the spectral densities of concentration fluctuations arising

from the stochastic nature of chemical reactions. Second-order response coefficients describe how perturbations of different

frequencies interact by mode coupling, yielding higher harmonics in the metabolic response. The temporal response to small

parameter fluctuations can be computed by Fourier synthesis. For a model of glycolysis, this approximation remains fairly accurate

even for large relative fluctuations of the parameters.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Biochemical reaction networks, which implement
both metabolism and signalling in cells, are subject to
permanent perturbations. The velocities of single
chemical reactions depend on kinetic parameters like
rate constants or enzyme activities. These parameters
may fluctuate due to external changes like temperature
shifts, but also due to internal processes, for instance,
changes of cell size and energy demand that go along
with the cell cycle. Moreover, reaction rates show
stochastic fluctuations (Gillespie, 1977, 2000) which
play a role if only few molecules are present (McAdams
and Arkin, 1997; Thattai and van Oudenaarden, 2001)
as in cell signalling or in the control of gene expression.
e front matter r 2005 Elsevier Ltd. All rights reserved.
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How will the dynamics of the entire biochemical
network respond to such permanent, fluctuating pertur-
bations of the individual reaction velocities?
It is well known that shifts of the kinetic parameters

can have dramatic effects on the behaviour of metabolic
systems: at bifurcation points, the system may undergo
qualitative changes, for instance switch between statio-
narity, oscillations, and chaos. Usually, however, a
small change of the parameters will only shift a steady
state or deform a limit cycle (Demin et al., 1999;
Reijenga et al., 2002). Metabolic control analysis
(MCA) (Fell, 1992; Heinrich and Schuster, 1996;
Hofmeyer, 2001) describes how a static parameter
change will alter the system’s metabolic variables, such
as stationary metabolic concentrations or fluxes, or the
system trajectories (Ingalls and Sauro, 2003). If the
parameters are changed by a small amount, the resulting
shift of the metabolic variables is approximately
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1This is the case if the kinetics functions can be continuously

differentiated twice with respect to both concentrations and para-

meters.
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proportional to the parameter shift, and the linear
coefficients are called the metabolic response coefficients
(Heinrich and Schuster, 1996). For larger perturbations,
a quadratic approximation involving second-order
response coefficients has been proposed (Höfer and
Heinrich, 1993).
How can we describe the effects of parameter

fluctuations in time? Demin et al. (1999) assumed that
each reaction velocity is the product of a static enzyme
concentration and an oscillatory turnover rate: the
Fourier components of the system’s oscillations were
then expanded with respect to static enzyme concentra-
tions, for fixed oscillations of the external parameters.
Along a slightly different line, Ingalls (2004) and
Liebermeister (2004) analysed how a stable system
responds to small harmonic oscillations of single
parameters. A harmonic perturbation will lead to forced
harmonic oscillations of all metabolic variables, each
with a certain amplitude and phase shift. The oscilla-
tions of parameters and system variables are related to
each other by frequency-dependent, complex functions
termed the spectral response coefficients (Liebermeister,
2004). It turns out that this generalization of MCA to
oscillatory perturbations requires only a slight modifica-
tion of the existing formulae. A thorough treatment for
linearized systems has been given in Ingalls (2004).
We extend this idea to general nonlinear systems and

define spectral response coefficients by differentiating
Fourier components of metabolic variables with respect
to the Fourier components of the parameters: the first
and second derivatives are then termed the spectral
response coefficients of first and second order. For small
parameter perturbations, the spectral response coeffi-
cients can be used to approximate the frequency
spectrum of the metabolic variables. The respective time
courses can then be obtained by Fourier synthesis. In
this article, we first review responses to static parameter
changes and linear systems with temporal parameter
perturbations. Then, the spectral response are defined in
Section 4. Section 5 is devoted to spectral control
coefficients. In the remainder, we discuss how perturba-
tions of certain frequencies can be amplified by reso-
nance. Resonance can also occur with stochastic para-
meter fluctuations, giving rise to a peak in the spectral
density of concentration fluctuations. We conclude the
article with two illustrating examples: the propagation
of perturbations along a linear reaction chain and a
model of glycolysis with oscillating energy storage.

Mathematical notation: (1) Vectors and matrices are
denoted by bold face letters. (2) If a subscript or
superscript appears twice in a formula, as in AikBkl ; it is
summed over by convention. (3) Functionals are written
with square and round brackets: if a functional h maps
the functions f 1ð�Þ; . . . ; f nð�Þ to a function g : x ! gðxÞ;
then h½f 1ð�Þ; . . . ; f nð�Þ�ðxÞ denotes gðxÞ: (4) I ¼ ðdikÞ

denotes the identity matrix, while daðoÞ :¼dðo� aÞ is
Dirac’s delta distribution. (5) Oscillations are described
by circular frequencies (Greek letters), e.g. o ¼ 2p=T ;
where T is the period. (6) If xðtÞ is a time course, then
x̂o :¼x̂ðoÞ denotes its Fourier transform at frequency o;
xð�Þ denotes the entire function, and x̂ð�Þ denotes the
Fourier transform as a function.
2. Static response coefficients

A thorough treatment of the metabolic response
coefficients can be found in Fell (1992), Heinrich and
Schuster (1996) and Hofmeyer (2001). As a reminder, let
us briefly recall some basic definitions: the metabolite
concentrations xlðtÞ in a biochemical reaction network
follow the differential equations

d

dt
xðtÞ ¼ NvðxðtÞ; pÞ; (1)

given here in vectorial form. The velocities of the
chemical reactions are given by the kinetics functions
vkðx; pÞ where the kinetic parameters are denoted by pm:
Each column of the stoichiometric matrix N contains the
stoichiometric coefficients of a chemical reaction,
describing the amounts of metabolites that are con-
sumed and produced in this reaction. If the metabolite
concentrations are constrained by conservation rela-
tions, then N does not have full row rank. In this case,
we follow (Reder, 1988) and represent the system by a
set of independent metabolites: first, we reorder N such
that its top part NR consists of a maximal set of linearly
independent rows. Then N is split into the product N ¼

LNR where NR is called the reduced stoichiometric
matrix and L is called the link matrix.
The derivatives of the reaction kinetics vk with respect

to metabolite concentrations and kinetic parameters are
called the unscaled reaction elasticities

�S
kl :¼

qvk

qxl

; �P
km :¼

qvk

qpm

;

�SS
klj :¼

q2vk

qxlqxj

; �SP
klm :¼

q2vk

qxlqpm

; �PP
kmn :¼

q2vk

qpmqpn

: (2)

The Jacobian matrix for the independent metabolites
reads M0 ¼ NR�SL: We assume that with a parameter
vector p0; the system exhibits a stable steady state sðp0Þ

fulfilling

0 ¼ Nvðsðp0Þ; p0Þ: (3)

In the following, we shall assume that the steady state
remains stable in a neighbourhood Op around the
unperturbed parameters.1 The steady state concentra-
tions and metabolic fluxes at parameters p 2 Op are
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described by the functions sðpÞ and jðpÞ :¼vðsðpÞ; pÞ;
respectively. A small static change Dp ¼ p � p0 of the
parameters will shift the steady state. The resulting
change Ds ¼ sðpÞ � sðp0Þ of metabolite concentrations
can be written as a Taylor expansion

Dsl ¼ RS
lmDpm þ 1

2
RS;2

lmnDpmDpn þ OððDpÞ3Þ (4)

of the parameter changes. The metabolic response
coefficients (Heinrich and Schuster, 1996; Höfer and
Heinrich, 1993)

RS
lm :¼

qslðpÞ

qpm

;

RS;2
lmn :¼

q2slðpÞ

qpmqpn

(5)

are the derivatives of the steady state concentra-
tions with respect to the parameters. Flux response
coefficients RJ

km and RJ;2
kmn for the steady state flux j

are defined accordingly. It is important not to confuse
the elasticities �P

km; which are used for expanding the
single reaction velocities at fixed concentrations, with
the flux response coefficients RJ

km used to expand
the stationary fluxes: the former refer to a local
property of an isolated reaction velocity, while the
latter describe a global property of the entire system.
Also note that in this article, elasticities as well as
control and response coefficients are used in their
unscaled form.
2Yðt � t0Þ denotes the Heaviside function, defined by Yðt � t0Þ ¼ 1

for tXt0; Yðt � t0Þ ¼ 0 for tot0:
3. Parameter fluctuations in a linear system

The concept of response coefficients described
above is now extended to temporally varying para-
meters pðtÞ ¼ p0 þ DpðtÞ that fluctuate around the
unperturbed values p0: Before tackling general meta-
bolic systems in Section 4, let us study a simple linear
system in detail. We consider a single metabolite
xðtÞ that is produced with a rate k1pðtÞ and linearly
degraded with a rate constant k2: The parameter pð�Þ

describes the fluctuating concentration of a precursor
metabolite. The concentration xðtÞ follows the differ-
ential equation

d

dt
xðtÞ ¼ axðtÞ þ bpðtÞ; (6)

where we have set b ¼ k1 and a ¼ �k2: If we impose the
initial condition xðt0Þ ¼ x0; the solution reads

xðtÞ ¼ eaðt�t0Þx0 þ

Z t

t0

eaðt�t0Þbpðt0Þdt0: (7)

The first term depends on the initial value x0 but not on
the time-dependent parameter pð�Þ; and it vanishes if we
impose an initial condition at t0 ¼ �1: The integration
kernel KSðt; t0Þ ¼ beaðt�t0ÞYðt � t0Þ in the second term is
called the pulse-response function.2

We shall now try to reobtain result (7) from the
Fourier-transforms of xðtÞ; pðtÞ; and the pulse-response
function. The second term of Eq. (7), for t0 ! �1; will
be called s½pð�Þ�ðtÞ: Hence, the differential equation (6)
defines a mapping

pð�Þ �!
ODE

s½pð�Þ�ð�Þ: (8)

Together with the Fourier transformation

ŝo :¼
1ffiffiffiffiffiffi
2p

p

Z 1

�1

e�iotsðtÞdt; (9)

p̂o :¼
1ffiffiffiffiffiffi
2p

p

Z 1

�1

e�iotpðtÞdt (10)

fulfilling

pðtÞ ¼
1ffiffiffiffiffiffi
2p

p

Z 1

�1

eiotp̂o do; (11)

we can map a parameter spectrum to the corresponding
concentration spectrum via the combined mappings

p̂ð�Þ �!
FT

pð�Þ �!
ODE

sð�Þ �!
FT

ŝð�Þ:

Let us consider a parameter time course with the
Fourier spectrum p̂ð�Þ: The Fourier components of the
concentration and parameter time courses, at frequency
o; will be denoted by ŝo½p̂ð�Þ� and p̂o½p̂ð�Þ�; respectively.
We define the spectral response coefficient as the
functional derivative (indicated by a curved d) of ŝo
with respect to the Fourier component p̂a

RSðo; aÞ :¼
dŝo½p̂ð�Þ�

dp̂a

¼ lim
h!0

ŝo½p̂ð�Þ þ hdað�Þ� � ŝo½p̂ð�Þ�

h
: ð12Þ

To compute it, we insert xðtÞ ¼ s½pð�Þ�ðtÞ into Eq. (6),
Fourier-transform the equation, and obtain

ioŝo½p̂ð�Þ� ¼ aŝo½p̂ð�Þ� þ bp̂o½p̂ð�Þ�

) 0 ¼ �ða � ioÞŝo½p̂ð�Þ� � bp̂o½p̂ð�Þ� for all o: (13)

Differentiating this equation with respect to a Fourier
component p̂a yields

0 ¼ � ða � ioÞ
dŝo½p̂ð�Þ�

dp̂a
� b

dp̂o½p̂ð�Þ�

dp̂a

¼ � ða � ioÞRSðo; aÞ � bdaðoÞ; ð14Þ

) RSðo; aÞ ¼ �ða � ioÞ�1bdaðoÞ; (15)

which is the Fourier transform of the pulse-response
function.



ARTICLE IN PRESS
W. Liebermeister / Journal of Theoretical Biology 234 (2005) 423–438426
Just to check this result, let us try to reobtain a
solution sðtÞ for a given time course pð�Þ ¼ p0ð�Þ þ Dpð�Þ

with static p0ðtÞ ¼ p0: The general solution reads

xðtÞ ¼ eaðt�t0Þx0 þ s½p0ð�Þ�ðtÞ þ s½Dpð�Þ�ðtÞ; ð16Þ

¼ eaðt�t0Þx0 þ s0ðtÞ þ DsðtÞ; ð17Þ

where the second term yields s0ðtÞ ¼ �p0b=að1� eaðt�t0ÞÞ:
The first two terms vanish for t0 ! �1: To compute
the third term DsðtÞ; which is due to the perturbation, we
approximate

Dŝo �

Z 1

�1

RSðo; aÞDp̂a da ¼ �ða � ioÞ�1bDp̂o: ð18Þ

Fourier synthesis of Eq. (18) yields

Ds½pð�Þ�ðtÞ �

Z t

�1

eaðt�t0ÞbDpðt0Þdt0; (19)

which is actually the exact solution (compare
Eq. (8)) and (8), because the Fourier transform is also
linear.
The above results hold in general for metabolic

systems with linear differential equations. In particular,
we may linearize a metabolic system around a stable
steady state, that is, replace the kinetics functions by
linear approximations and obtain the linear equation
system

d

dt
Dxind ¼ NRð�

SLDxind þ �PDpÞ (20)

for the vector xind of independent metabolites. Setting
A ¼ NR�SL and B ¼ NR�P; we can treat this equation
system just like the above example. The pulse-response
function and the spectral response coefficients matrix for
all metabolites read

KSðt � t0Þ ¼ LeNR�SLðt�t0ÞNR�
PYðt � t0Þ; ð21Þ

RSðo; aÞ ¼ �LðNR�
SL � ioIÞ�1NR�

PdaðoÞ: ð22Þ

Formula (22) will also remain valid for stable
nonlinear systems.
4. Spectral response coefficients

We shall now generalize the concept of spectral
response coefficients to general metabolic networks
described by a nonlinear equation system

d

dt
xðtÞ ¼ NvðxðtÞ; pðtÞÞ (23)

for all t 2 IR: We still assume that (i) for the para-
meter set p0; there is a stable steady state s0 ¼ sðp0Þ;
that (ii) the steady state remains stable in a neighbour-
hood of s0 and p0; and that (iii) the Jacobian matrix
M0 ¼ NR�sL for the independent metabolites has full
rank.
4.1. Standard solution

First, we need to establish a unique mapping between
the time courses of parameters and variables that does
not depend on the choice of initial conditions. For static
parameters pðtÞ ¼ p0; there exist trajectories from
different initial points that converge to the steady state
concentrations s0 ¼ sðp0Þ; and there may also be other
solutions outside the basin of attraction. Among all
these solutions, we choose the constant time course
sðtÞ ¼ s0 as the ‘‘standard’’ solution. Fluctuating para-
meters pðtÞ ¼ p0 þ Dp will lead to perturbed time
courses. In this case, a standard solution sðtÞ ¼ s0 þ

DsðtÞ will be defined as follows: for each initial time t0;
we first set

p�ðt; t0Þ :¼
p0 : tot0;

p0 þ DpðtÞ : tXt0:

(
ð24Þ

Let sðt; t0Þ be the (unique) solution of Eq. (23) for the
parameter time course p�ðt; t0Þ and sðt0; t0Þ ¼ s0 for
t0ot0: The standard solution for pðtÞ is defined by

sðtÞ :¼ lim
t0!�1

sðt; t0Þ (25)

if this limit (with respect to the L1 norm) exists and
fulfils the system equations (23). We restrict our analysis
to bounded, sufficiently small Dpð�Þ for which such a
standard solution exists.

4.2. Fourier transforms

We next assume that the perturbation DpðtÞ is so small
that also s½pð�Þ�ðtÞ remains bounded. With Fourier
components defined by

p̂mo :¼
1ffiffiffiffiffiffi
2p

p

Z 1

�1

e�iotpmðtÞdt; (26)

ŝlo :¼
1ffiffiffiffiffiffi
2p

p

Z 1

�1

e�iotslðtÞdt; (27)

ĵko :¼
1ffiffiffiffiffiffi
2p

p

Z 1

�1

e�iotjkðtÞdt; (28)

the time courses of parameters, metabolite concentra-
tions, and fluxes can be described by Fourier synthesis

pmðtÞ ¼
1ffiffiffiffiffiffi
2p

p

Z 1

�1

eiotp̂mo do; (29)

slðtÞ ¼
1ffiffiffiffiffiffi
2p

p

Z 1

�1

eiotŝlo do; (30)

jkðtÞ ¼
1ffiffiffiffiffiffi
2p

p

Z 1

�1

eiotĵko do: (31)

For keeping the formula clear, we write the frequencies
of Fourier transforms as Greek subscripts. Note the
all time courses and their Fourier transforms are
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represented by tempered distributions. For instance, we
may consider a harmonic oscillation f ðtÞ ¼ eiat; the
Fourier transform of which is the delta distribution
f o ¼

ffiffiffiffiffiffi
2p

p
daðoÞ:

4.3. Definitions

The standard solution of equation system (23),
written as a functional of pð�Þ; is called s½pð�Þ�ðtÞ: The
corresponding reaction velocities are denoted by
j½pð�Þ�ðtÞ :¼vðs½pð�Þ�ðtÞ; pðtÞÞ: In analogy to Eq. (8), the
Fourier components of concentrations and reaction
velocities can be written as functionals of the Fourier-
transformed parameters

ŝlo : p̂ð�Þ ! ŝlo½p̂ð�Þ�;

ĵko : p̂ð�Þ ! ĵko½p̂ð�Þ�: (32)

In analogy to Eqs. (5) and (12), we define the spectral
concentration response coefficients of first and second
order by the functional derivatives

RS
lmðo; aÞ :¼

dŝlo½p̂ð�Þ�

dp̂ma
; (33)

RS;2
lmnðo; a;bÞ :¼

d2ŝlo½p̂ð�Þ�

dp̂madp̂nb
(34)

if these derivatives exist. Spectral flux response coeffi-
cients are defined analogously:

RJ
lmðo; aÞ :¼

dĵlo½p̂ð�Þ�

dp̂ma
; (35)

RJ;2
lmnðo; a;bÞ :¼

d2 ĵlo½p̂ð�Þ�

dp̂madp̂nb
: (36)

In analogy to the static case, matrices of spectral flux
and concentration control coefficients are defined as

CS
lmðo; aÞ :¼

dŝlo½p̂ð�Þ�

dp̂ma

qvm

qpm

� ��1

; (37)

CJ
kmðo; aÞ :¼

dĵko½p̂ð�Þ�

dp̂ma

qvm

qpm

� ��1

; (38)

where each parameter pm acts specifically on a single
reaction velocity vm:

4.4. Computing the response and control coefficients

The spectral response and control coefficients can be
computed from the stoichiometric matrix and the
elasticity matrices. With the definitions

CS
ðoÞ :¼� LðNR�

sL � ioIÞ�1NR; (39)

CJ
ðoÞ :¼�sCS

ðoÞ þ I; (40)
the matrices of control coefficients read

CS
ðo; aÞ ¼ CS

ðoÞdaðoÞ; (41)

CJ
ðo; aÞ ¼ CJ

ðoÞdaðoÞ: (42)

With the further definitions

RSðoÞ :¼CS
ðoÞ�P; (43)

RJðoÞ :¼CJ
ðoÞ�P; (44)

Gkmnða; bÞ :¼�SS
kqrR

S
qmðaÞR

S
rnðbÞ þ �SP

krmRS
rnðbÞ

þ �SP
kqnRS

qmðaÞ þ �PP
kmn; ð45Þ

the spectral response coefficients can be expressed as

RSðo; aÞ ¼ RSðoÞdaðoÞ; (46)

RJðo; aÞ ¼ RJðoÞdaðoÞ; (47)

RS;2
lmnðo; a;bÞ ¼

1ffiffiffiffiffiffi
2p

p CS
lkðoÞGkmnða;bÞdaþbðoÞ; (48)

RJ;2
lmnðo; a;bÞ ¼

1ffiffiffiffiffiffi
2p

p CJ
lkðoÞGkmnða;bÞdaþbðoÞ: (49)

The detailed derivation of these formulae is given in the
appendix. The term daðoÞ in Eqs. (46) and (47) implies
that, to first order, a harmonic perturbation of
frequency a yields a pure harmonic response of the
same frequency. To second order (Eqs. (48) and (49)),
modes of different frequencies are coupled: two pertur-
bations of frequencies a and b lead to a second-order
response of frequency o ¼ aþ b: For static perturba-
tions with a ¼ b ¼ 0; the above formulae turn into the
well-known results for static response coefficients. The
factor 1=

ffiffiffiffiffiffi
2p

p
reflects the arbitrary prefactor chosen for

the Fourier transformations in Eqs. (26)–(28), and it
disappears if the prefactor 1=2p is chosen for the Fourier
transform (26)–(28). Moreover, we will see below that it
cancels out in the Fourier synthesis used to reobtain
time courses.
4.5. Response to temporal parameter fluctuations

With the spectral response coefficients, we can
approximately solve the system (23), given a parameter
perturbation DpðtÞ: In analogy to Eq. (4), we approx-
imate the Fourier spectrum of concentration fluctua-
tions around a static standard time course s0ðtÞ ¼ s0 by

Dŝlo �

Z 1

�1

RS
lmðo; aÞDp̂ma da

þ
1

2

ZZ 1

�1

RS;2
lmnðo; a;bÞDp̂maDp̂nb dadb: ð50Þ
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coefficients. Each theorem concerns the control exerted by certain sets

of reactions. A summation theorem concerns reactions in a stationary

flux mode. As the stationary modes do not depend on the reaction

kinetics, the summation theorems refer only to the stoichiometric

structure of the network. A connectivity theorem concerns a set of all

reactions with kinetics depending on a certain metabolite concentra-

tion.
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With Eqs. (46) and (47), this formula simplifies to

Dŝlo � RS
lmðoÞDp̂mo

þ
1

2

Z 1

�1

RS;2
lmnðo; aÞDp̂maDp̂nðo�aÞ da ð51Þ

with the shortcut RS;2
lmnðo; aÞ :¼1=

ffiffiffiffiffiffi
2p

p
CS

lkðoÞGkmnða;o�

aÞ: Flux spectra can be computed accordingly by using
the flux response coefficients. Approximate time courses
Dsl ½pð�Þ�ðtÞ and Djk½pð�Þ�ðtÞ can be reconstructed from the
Fourier spectrum by Fourier synthesis, Eq. (30).
How will a metabolic system respond to harmonic

oscillations of a single parameter? Let us consider the
following parameter perturbation

DpmðtÞ ¼ Dpme
iat

and its Fourier transform

Dp̂mo ¼
ffiffiffiffiffiffi
2p

p
DpmdaðoÞ:

By using Eqs. (30) and (51), the response is approxi-
mated by

DslðtÞ � RS
lmðaÞe

iatDpm

þ 1
2
CS

lj ð2aÞGjmmða; aÞei2atðDpmÞ
2: ð52Þ

The second-order terms oscillate with the frequency 2a:
Instead of the complex exponential, a sine function
Dpm sinðiatÞ could be used to describe the perturbation.
Note that this function contains Fourier components at
a and �a; giving rise to second-order responses at
frequencies o ¼ 2a and o ¼ 0: The resulting time
course, though, is just the real part of (52). Eq. (52)
also shows that the prefactor 1=

ffiffiffiffiffiffi
2p

p
in the second-order

term is cancelled during Fourier synthesis. Thus for
static perturbations with frequencies a ¼ b ¼ 0; the
spectral response and control coefficients yield the same
results as traditional MCA.

5. Spectral control coefficients

The metabolic control coefficients (Heinrich and
Schuster, 1996) quantify the influence of certain chemical
reactions, irrespective of the particular parameter per-
turbed. Based on the spectral response coefficients, it is
straightforward to define spectral control coefficients, as
has been pointed out by Ingalls (2004) and Liebermeister
(2004). Here we introduce second-order spectral control
coefficients along with their summation theorems.

5.1. Second-order control coefficients

Second-order control coefficients for static perturba-
tions have been introduced in Höfer and Heinrich
(1993). Along the same lines, we may want to split the
second-order response coefficients into a product

RY ;2
lmnðo; a;bÞ ¼ CY ;2

lij ðo; a;bÞ�P
im�

P
jn; ð53Þ
where Y stands for either concentrations or fluxes, and
CY ;2

lij is the tensor of second-order control coefficients.
This separation is only feasible with reaction-specific
parameters pi that appear as prefactors in the reaction
kinetics, hence viðx; pÞ ¼ piwiðxÞ: In this case, the
elasticity matrix �P is diagonal and the second-order
control coefficients are defined by

CY ;2
lij ðo; aÞ :¼

d2ŷlo½p̂ð�Þ�

dp̂iadp̂ib

qvi

qpi

� ��1 qvj

qpj

 !�1

¼ RY ;2
lij ðo; a; bÞð�P

ii Þ
�1
ð�P

jj Þ
�1: ð54Þ

They read

CY ;2
lij ðo; a;bÞ ¼

1ffiffiffiffiffiffi
2p

p daþbðoÞCY
lkðoÞ ð55Þ

½�SS
kqrC

S
qiðaÞC

S
rjðbÞ þ dkiv

�1
i �S

irC
S
rjðbÞ

þ dkjv
�1
j �S

jqCS
qiðaÞ�: ð56Þ

This can be shown as follows: the decomposition
viðx; pÞ ¼ piwiðxÞ implies that �PP

lmn vanishes and �SP
lmn can

be factorized into �SP
lmn ¼ �S

lm �P
lnv�1l ; so Gkmnða;bÞ reads

Gkmnða; bÞ ¼ ½�SS
kqrC

S
qiðaÞC

S
rjðbÞ þ �S

krdkiv
�1
k CS

rjðbÞ

þ �S
kqdkjv

�1
k CS

qiðaÞ��
P
im�

P
jn: ð57Þ

Together with Eqs. (48) and (49) follows Eq. (53).
5.2. Summation and connectivity theorems

Just like the static control coefficients, the spectral
control coefficients fulfil summation and connectivity
theorems.3 We recall here the theorems for first-order
response coefficients as given by Ingalls (2004), which
generalize the well-known theorems for static control
coefficients. The Eqs. (39) and (40) imply the summation
theorems

CJ
ðoÞK ¼ K; (58)

CS
ðoÞK ¼ 0; (59)

where K denotes a matrix of stationary fluxes fulfilling
NK ¼ 0 and thus NRK ¼ 0: Moreover, Eqs. (39) and
(40) yield the connectivity theorems

CJ
ðoÞ�SL ¼ �io�SLðNR�

SL � ioIÞ�1; (60)

CS
ðoÞ�SL ¼ �LðI � ioðNR�

SL � ioIÞ�1Þ: (61)
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At o ¼ 0; the well-known theorems for static con-
trol coefficients (Heinrich and Schuster, 1996) are
reobtained.
Besides the connectivity theorems, there hold also the

relations

CJ
ðoÞð�sL � ioNþ

RÞ ¼ �ioNþ
R ; (62)

CS
ðoÞð�sL � ioNþ

RÞ ¼ �L; (63)

where Nþ
R :¼NT

RðNRNT
RÞ

�1 is the pseudoinverse of NR: In
general, Nþ

R is not sparse, so these formula do not
describe local relations. At o ¼ 0; again the static
connectivity theorems are reobtained.
The summation theorems for second-order control

coefficients follow immediately from Eqs. (55) and (59).
They read

CY ;2
lij ðo; a;bÞkð1Þ

i k
ð2Þ
j ¼ 0; (64)

where kð1Þ and kð2Þ are arbitrary kernel vectors fulfilling
Nkð1Þ ¼ Nkð2Þ ¼ 0: The theorem (64) is a generalized
form of the static summation theorems from Höfer and
Heinrich (1993).
6. Resonance

In certain systems, oscillatory perturbations can
lead to resonance, that is, to strong responses around
a certain frequency. The reason for this can be seen
from the first-order response coefficients, namely
from the eigenvalues of the matrix QðoÞ :¼ðNR�sL �

ioIÞ�1 in Eq. (39). The Jacobian matrix M0 ¼ NR�SL

determines how the system behaves after small devia-
tions from the steady state: complex eigenvalues
with negative real part correspond to exponentially
damped oscillations. As long as all eigenvalues have
negative real parts, the steady state remains stable.
If upon a parameter change, a complex eigenvalue
crosses the imaginary axis, then the respective oscilla-
tory mode becomes unstable and a limit cycle may
appear. This phenomenon is called a supercritical Hopf
bifurcation.
What happens if such a mode is driven by har-

monic perturbations? The Jacobian and QðoÞ have
the same eigenvectors: for each eigenvalue l ¼ kþ io0

of the Jacobian, QðoÞ has a corresponding eigen-
value l�ðoÞ ¼ 1=ðkþ iðo0 � oÞÞ: Just below a Hopf
bifurcation, where ko0 and jkj is small, jl�ðoÞj can
become quite large around o ¼ o0 and thus show a
resonance around o ¼ o0: This resonance will also be
visible in the response coefficients, which are linear
combinations of all eigenvalues of QðoÞ: We can
conclude that near a Hopf bifurcation, even if the
system is still stable, a damped oscillatory mode can
become sensitive to oscillatory perturbations of fre-
quency o0:
Example 6.1. For illustration, let us study the smallest
biochemical system with Hopf bifurcation (Wilhelm and
Heinrich, 1995) shown in Fig. 1, top left. The system
equations and the stoichiometric matrix read

d

dt

x1

x2

x3

0
B@

1
CA ¼

ðk1q � k4Þx1 � k2x1x2

�k3x2 þ k5x3

k4x1 � k5x3

0
B@

1
CA; (65)

N ¼

1 �1 0 �1 0

0 0 �1 0 1

0 0 0 1 �1

0
B@

1
CA: (66)

Setting all rate constants kl ¼ 1 (with dimensionless
time), the external metabolite concentration q is a
bifurcation parameter with the critical value q ¼ 3:
For q ¼ 2; the system exhibits a stable steady state at
x ¼ ð111ÞT : The eigenvalues of the Jacobian

M0 ¼

0 �1 0

0 �1 1

1 0 �1

0
B@

1
CA

are shown in the complex plane in Fig. 1, top right.
The upper circle corresponds to a damped oscillatory
mode with frequency (imaginary part) o0: Upon a
parameter shift, it may become unstable at a similar
frequency (triangle). The lower left diagram in Fig. 1
shows jl�ðoÞj ¼ jðkþ iðo0 � oÞÞ�1j as a function of the
excitation frequency o with its resonance peak around
o ¼ o0:
7. Stochastic parameter fluctuations

Until here, we considered fixed time courses of the
parameter fluctuations, but the analysis can also be
extended to stochastic fluctuations or, that is, realiza-
tions of a stochastic process. In this section, we shall
consider a linearized biochemical system with parameter
perturbations given by independent Gaussian noise.
Without loss of generality, we assume that the noise has
unit variance when expressed in the chosen physical
units. The concentration fluctuations DxðtÞ follow a
stochastic process obeying the Langevin equation

dDxðtÞ ¼ N�SDxðtÞdt þ N�P dwðtÞ; (67)

where the wkðtÞ are independent Wiener processes, each
related to one of the parameters. This stochastic
differential equation can also be written in the symbolic
form

d

dt
DxðtÞ ¼ N�SDxðtÞ þ N�PDpðtÞ; ð68Þ

where the parameter perturbations DpkðtÞ are uncorre-
lated Gaussian white noises of unit variance. This
equation is a stochastic analog of Eq. (20). The solution
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Fig. 1. Resonant response in a small biochemical system (Wilhelm and Heinrich, 1995). Top left: Network topology. Solid arrows indicate chemical

reactions while dashed arrows denote positive regulatory interactions. Top right: Spectrum of the Jacobian matrix M0: The eigenvalues of M0

(circles) are shown in the complex plane, for the value q ¼ 2 of the bifurcation parameter. At q ¼ 3; the pair of complex eigenvalues crosses the

imaginary axis (triangles, solid arrows) and the steady state becomes unstable, giving rise to stable oscillations. The upper complex eigenvalue (for

q ¼ 2) is l ¼ kþ io0 with k � �0:12;o0 � 0:74: Stars indicate the eigenvalues for q ¼ 2; shifted by �io (dashed arrows). At o � o0; jl� ioj
becomes small. Bottom left: the matrix QðoÞ ¼ ðM0 � ioÞ�1 has the same eigenvectors as M0: The graph shows the absolute value of the eigenvalue

l�ðoÞ ¼ ðl� ioÞ�1 as a function of the excitation frequency o: For o � o0; jl�ðoÞj becomes resonant as jl� ioj becomes small. Bottom right: The

resonance is also visible in the spectral densities of concentration fluctuations due to small molecule numbers (see Section 7).
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DsðtÞ and the corresponding reaction velocities DjðtÞ ¼

�SDsðtÞ þ �PDpðtÞ are merged into a vector

Dy ¼
Ds

Dj

 !

and accordingly, we set

RY ðoÞ ¼
RSðoÞ

RJðoÞ

 !
:

Correlated fluctuations can be described by the covari-
ance functions covðDY iðtÞ;DY jð0ÞÞ or by their Fourier
transforms, the spectral densities SY

ij ðoÞ: The diagonal
element SY

ii ðoÞ describes the square amplitude of
fluctuations in yi at frequency o: The matrix SY ðoÞ
can be computed from the spectral response coefficients
(see Knobloch and Kwakernaak, 1985):

SY ðoÞ ¼ RY ðoÞSPðRY ðoÞÞy ¼ RY ðoÞðRY ðoÞÞy: (69)

The symbol y denotes the matrix adjoint, that is, the
complex conjugate of the transposed matrix. The second
equality follows from the fact that the spectral density
SP of the white noises pkðtÞ is just the identity matrix.
As a fundamental example, we shall now study the
intrinsic stochastic fluctuations of chemical reactions.
On a microscopic level, the state of a well-mixed
chemical system can be described by discrete molecule
numbers, which are increased or decreased by discrete
reaction events. Under certain conditions (Gillespie,
2000), the molecule numbers can be approximated by
continuous random variables x̄i following the chemical
Langevin equation

d

dt
x̄iðtÞ ¼ Nikakðx̄ðtÞÞ þ Nik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
akðx̄ðtÞÞ

p
ZkðtÞ: (70)

The propensity function ak describes the probability per
time that the kth reaction will occur in the next
infinitesimal time interval. Apart from describing
molecule numbers instead of concentrations, Eq. (70)
resembles the deterministic Eq. (23) for biochemical
networks, with an additional stochastic term accounting
for the fluctuations. If the molecule numbers and thus
the propensities ak are small, then fluctuations may
become important. For large molecule numbers, one
may neglect the noise term, express the molecule
numbers x̄i by concentrations, and reobtain the deter-
ministic model (23) for the average concentrations.
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Fig. 2. Linear reaction chain with metabolite concentrations

x1; . . . ; x5: The reaction velocities are controlled by parameters pi

(solid arrows). In a second version of this example, the first reaction is

inhibited by metabolite 3 (dashed arrow).
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We consider a volume On such that a concentration of
1mol/l is equivalent to n molecules:4 if NA � 6:022�
1023 mol�1 denotes Avogadro’s constant, then NAOn

is n l/mol. To treat the intrinsic fluctuations as
parameter perturbations, we introduce metabolite
concentrations xi :¼ðNAOÞ

�1x̄i and reaction velocities
vkðxÞ :¼ðNAOÞ

�1akðNAOxÞ: We assume that without the
stochastic term in Eq. (70), the mean concentrations
would be in steady state. Then we include the fluctua-
tions Zk as virtual parameters pk into the kinetics and
rewrite Eq. (70) as

d

dt
xiðtÞ ¼ Nikv�kðxðtÞ; pðtÞÞ

with v�kðx; pÞ :¼vkðxÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNAOÞ

�1vkðxÞ

q
pk: (71)

By linearizing the kinetics vk around x0 and setting
DxðtÞ :¼xðtÞ � x0; we obtain

d

dt
DxðtÞ ¼ N�SDxðtÞ þ N�PpðtÞ

with �P :¼ðNAOÞ
�1=2diagðvðx0ÞÞ

1=2; (72)

which is just the Langevin equation (68). The system size
appears as a prefactor n�1=2 in the elasticity matrix �P;
and, as a consequence, in the spectral response
coefficients.

Example 7.1. We consider again the reaction system
described by Eq. (66) and compute the spectral densities
of concentration fluctuations. We keep the parameter
values ki ¼ 1; now assuming that time is measured in
seconds and concentrations are measured in mol/l. With
n ¼ 100; for instance, the external concentration q ¼

2mol=l corresponds to a (fixed) number of 200
molecules, while the steady-state concentrations x1 ¼

x2 ¼ x3 ¼ 1mol=l correspond to 100 molecules of each
species. The corresponding volume is a cube of 5.5 nm
edge length. The diagonal elements of �P read
ðNAOnÞ

�1=2
ð
ffiffiffi
2

p
; 1; 1; 1; 1ÞT ; and the spectral density for

concentration fluctuations is

SS ¼ ðNAOnÞ
�1CSðoÞdiagðvÞðCSðoÞÞy

¼ n�1ðM0 � ioÞ�1NdiagðvÞNT

�ðM0 þ ioÞ�1
T

l=mol: ð73Þ

The physical unit of the spectral density itself is s�1

because v is measured in mol/(l s). Fig. 1, bottom right,
shows that the resonance in the response coefficients
leads to a strong resonance peak in the spectral
densities.
4 To do so, we first consider a volume O1 ¼ 1=ðNA molÞ liters �

1:66� 10�24 l: If the concentration of a metabolite is 1mol/l, then the

volume O1 will contain one molecule of it on average. We then set

On ¼ nO1:
8. Examples

8.1. Linear chain

We shall now study how forced oscillations propagate
through a chain of chemical reactions (see Fig. 2). We
consider small perturbations plðtÞ of the kinetic para-
meters around constant standard values, leading to
small deviations xlðtÞ and vlðtÞ of concentrations and
fluxes, respectively. The differential equations for these
deviations read

d

dt
xl ¼ vl � vlþ1: (74)

The linearized reaction kinetics with forward elasticities
�S
þl and backward elasticities ��S

�l read

v1 ¼ ��S
�1x1 þ �P

1 p1;

vl ¼ �S
l xl�1 � �S

�lxl þ �P
l pl for 2plpn � 1;

vn ¼ �S
n xn�1 þ �P

n pn: (75)

Fig. 3 shows the first-order spectral response coefficients
for a chain length n ¼ 5 and irreversible kinetics with
�S

i ¼ 1; �S
�i ¼ 0: For simplicity, the parameter elasticities

�P
l were also chosen to be 1, so the response coefficients
equal the control coefficients. The response coefficients
were computed according to Eqs. (46) and (47). The
oscillatory perturbation of reaction 1 leads to a traveling
wave of metabolite and flux oscillations. Due to the
irreversible kinetics, the wave propagates only in forward
direction, with an exponentially decreasing amplitude and
a constant phase shift between subsequent reactions. The
parameters inside the chain also influence the substrate of
their reaction, with a large phase shift, similar to a
negative influence. The response coefficients decrease with
o; so the chain acts as a low-pass filter. If the reactions are
reversible, the eigenvalues split and the wave propagates
in both forward and backward direction (not shown).
Now we introduce a feedback term between the

metabolite concentration x3 and the reaction velocity v1
(Fig. 2, dashed arrow):

v1 ¼ �S
1x1 � �S

�1x1 � �S
fbx3: (76)

The value of �S
fb (here, for simplicity, 1) originates from a

linearization of the reaction kinetics with respect to x3:
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The results for this system are shown in Fig. 4: via to the
feedback loop, the parameters p2; . . . ; p5 control the
whole chain. The pair of complex eigenvalues of the
Jacobian shows that the system is just below a Hopf
bifurcation, giving rise to resonance behaviour, so the
chain acts as a band pass filter.

8.2. Glycolysis model

As a biological example, we studied forced oscilla-
tions in the glycolysis model of Hynne et al. (2001). The
model describes the production and consumption of
energy in a suspension of yeast cells. The variables
represent metabolite concentrations inside the cells (17
metabolites) and in the growth medium (5 metabolites),
while the 63 parameters comprise the kinetic constants
of the reactions, as well as the Glucose concentration in
the inflowing medium. Their values were determined in
Hynne et al. (2001) at the onset of glycolytic oscillations.
Model equations and parameter values were taken from
the JWS online model database (Olivier and Snoep,
2004).
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Fig. 5. Linear response coefficients in the glycolysis model of Hynne et

al. (2001). The rate constant k22 of the energy storage reaction G6P +

ATP ! ADP (denoted by storage) is perturbed by a harmonic

oscillation with a period of 10min. The model topology is shown by

straight lines between the reactions and metabolites. As in Figs. 3 and

4, circles with arrows represent complex response concentration

response coefficients RS and RJ (arbitrary scaling).

5The temporal response to perturbations of metabolite concentra-

tions, instead of parameters, has been studied before: Heinrich and

Reder (1991) studied the relaxation from a perturbed state towards the

steady state. The respective pulse-response function, in the form of a

correlation matrix, was expanded with respect to paths through the

network in Rojdestvenski and Cottam (2000). Steuer et al. (2003)

studied the overall covariance between metabolite concentrations due

to local stochastic perturbations of the concentrations.
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For a low Glucose concentration of 5.0mM in the
inflowing medium, we obtain a stable steady state. Now
the rate constant k22 for the energy storage reaction
G6PþATP ! ADP is perturbed by oscillations of
frequency a ¼ 2p=ð10 minÞ and a maximal relative
amplitude of 30% around the standard value
2:2593mM�1 min�1: Fig. 5 shows the resulting linear
response coefficients of concentrations (left diagram,
RSðoÞ computed from Eq. (46)) and fluxes (right
diagram, RJðoÞ computed from Eq. (47)).
The detailed shape of the forced oscillations is shown

in Fig. 6. For the exact numerical simulation, the system
was initialized at its steady state (indicated by the straight
line) and then run for about 30 periods. The solid curves
show the time courses during one oscillation period after
this tuning. The numerical results are compared to
approximations from Eq. (52). For the parameters
chosen, the first-order response coefficients (dotted lines)
yield a close approximation: deviations from sine waves
are partly captured by the second-order approximation
(dashed lines). Despite the relatively large parameter
variation, the second-order effects remain rather small.

9. Discussion

Some subsystems of cells show stable oscillations or
other intrinsic dynamics. Others behave rather lazily,
relaxing towards a stable stationary state. When MCA is
applied to the latter, they are usually described in
isolation while in reality, they are coupled to the rest of
the cell and thus subject to permanent parameter
perturbations. Another inevitable source of perturba-
tions are the stochastic fluctuations of reaction velo-
cities. How will such parameter perturbations, which
can be oscillatory, transient, or stochastic, propagate
along a biochemical network that is close to a stable
steady state? To address this question, we generalized
MCA from steady states to entire time courses, using
functional analysis instead of usual vector analysis.
Instead of directly studying the time courses of

parameters, concentrations, and fluxes, we represented
them in a Fourier basis of harmonic oscillations. This
leads to particularly simple results for linearized systems
(see Ingalls, 2004 and Liebermeister, 2004), in which the
propagation of parameter perturbations in time5 and the
response to oscillatory perturbations are two sides of a
coin. The response to perturbations can be described by
a pulse-response function, that is, the system’s response
to a d-like (infinitely short) perturbation of a parameter.
The response to general perturbations can be expressed
by convolving this pulse-response function with the time
course of the parameter. Working with Fourier compo-
nents has the advantage that the convolution translates
to a simple multiplication in frequency-space, where the
spectral response coefficients are just a Fourier-trans-
forms of the pulse-response function. A second, quite
popular approach in the control theory of linear systems
is the Laplace transformation: a time-invariant linear
system can be described by its transfer function Hð�Þ; the
Laplace-transformed of the system’s pulse-response
function. Due to the close relation between Laplace
and Fourier transformation, transfer function and first-
order spectral response coefficients are related by
HðioÞ ¼ RSðo;oÞ:
For general nonlinear systems, we defined the spectral

response coefficients by functional derivatives of the
Fourier transforms: the resulting first-order response
coefficients are identical to those defined in Ingalls
(2004) and Liebermeister (2004) for linearized systems.
Our method is closely related to traditional MCA: the
spectral response coefficients are computed from the
Fourier-transformed differential equation io sðoÞ ¼
NvðoÞ; in a similar manner as the static response
coefficients can be derived from the stationarity condi-
tion 0 ¼ Nv (see Heinrich and Schuster, 1996). Due to
the left-hand side of the differential equation, a term ioI

is added to the Jacobian matrix. As a consequence, the
control and response coefficients become complex and
frequency-dependent. With the modified control coeffi-
cients matrix CSðoÞ; it is straightforward to generalize
various results from MCA to non-zero frequencies. For
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instance, modular systems can be studied, for each
frequency separately, in a similar way as in standard
modular response theory (Bruggeman et al., 2002). The
spectral control coefficients fulfil summation and con-
nectivity theorems, just like their static counterparts: the
summation theorems remain unchanged, while the
connectivity theorems contain an additional, fre-
quency-dependent term.
Our method is well suited for large systems: in contrast

to numerical simulation, no differential equations need to
be solved, and the steady state has to be computed only
once.6 Given the steady state, the response coefficients for
each frequency can be calculated by matrix operations,
the most time-consuming part being the numerical inver-
sion of the Jacobian. For computing the Fourier synthe-
sis, however, this matrix inversion has to be repeated for
each frequency considered. Like in static MCA, the
expansion with response coefficients is only valid for
small parameter changes. For larger perturbations, it is
not guaranteed that (1) a unique standard solution can be
defined, (2) this solution can be Fourier-transformed, (3)
the response coefficients exist, and (4) the second-order
approximation yields satisfying results. We may assume,
however, that these assumptions hold for small perturba-
tions Dpð�Þ; and our simulations for the glycolysis model
confirmed this even for considerable perturbations. For
linearized systems, theory ensures that the spectral
response coefficients exist and yield the exact solution.
We can conclude that a stable biochemical system,

subject to small parameter perturbations, acts as a
frequency filter: a harmonic parameter oscillation leads
to a forced oscillation of system variables with the same
frequency, but with different phases and amplitudes.
Biochemical systems may show specific frequency-
dependent behaviour: near a supercritical Hopf bifurca-
tion, resonance can occur and drive the system out of
the region where the linear approximation was valid.
Some systems, like the irreversible linear chain, will act
as a low-pass filter extracting the slow harmonic part
from incoming oscillations. On the other hand, non-
linearities may lead to mode-coupling, adding harmo-
nics to an incoming sine wave, as it has been found
experimentally in the photosynthesis system of plants
and bacteria (Nedbal et al., 2003).
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Appendix A. Derivation of spectral response coefficients

A.1. Spectral elasticities

For given vector-valued xðtÞ and pðtÞ; the Fourier
components of a reaction kinetics vk are defined by

v̂ko½xð�Þ; pð�Þ� :¼
1ffiffiffiffiffiffi
2p

p

Z 1

�1

e�iotvkðxðtÞ; pðtÞÞdt: (77)

We define the spectral elasticities by the functional
derivatives

�S
kmðo; aÞ :¼

dv̂ko½xð�Þ; pð�Þ�

dx̂ma
;

�P
kmðo; aÞ :¼

dv̂ko½xð�Þ; pð�Þ�

dp̂ma
; ð78Þ

�SS
kmnðo; a;bÞ :¼

d2v̂ko½xð�Þ; pð�Þ�

dx̂madx̂nb
;

�SP
kmnðo; a;bÞ :¼

d2v̂ko½xð�Þ; pð�Þ�

dx̂madp̂nb
;

�PP
kmnðo; a;bÞ :¼

d2v̂ko½xð�Þ; pð�Þ�

dp̂madp̂nb
: (79)

The spectral elasticity �S
kmðo; aÞ; for instance, describes

how the Fourier component of the kth reaction velocity
at frequency o responds to a small oscillatory perturba-
tion of concentration xm with frequency a: The reaction
is viewed in isolation, that is, the rest of the network is
kept fixed at its unperturbed state. If the unperturbed
time courses x0ð�Þ and p0ð�Þ are static, the spectral
elasticities read

�S
kmðo; aÞ ¼ �S

kmdaðoÞ; (80)

�P
kmðo; aÞ ¼ �P

kmdaðoÞ; (81)

�SS
kmnðo; a;bÞ ¼

1ffiffiffiffiffiffi
2p

p �SS
kmndaþbðoÞ; (82)

�SP
kmnðo; a;bÞ ¼

1ffiffiffiffiffiffi
2p

p �SP
kmndaþbðoÞ; (83)

�PP
kmnðo; a;bÞ ¼

1ffiffiffiffiffiffi
2p

p �PP
kmndaþbðoÞ: (84)

We will demonstrate this for �S
kmðo; aÞ and

�SS
kmnðo; a;bÞ: The spectral elasticities �

S
kmðo; aÞ read

dv̂ko½xð�Þ; pð�Þ�

dx̂ma
¼

1ffiffiffiffiffiffi
2p

p

Z 1

�1

e�iot d
dx̂ma

vk

1ffiffiffiffiffiffi
2p

p

Z 1

�1

eigtx̂1g dg; ::; pðtÞ
� �

dt

¼
1

2p

Z 1

�1

e�iot qvkðxðtÞ; pðtÞÞ

qxm

eiat dt: ð85Þ
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For static x0ðtÞ ¼ x0 and p0ðtÞ ¼ p0; this yields

�S
kmðo; aÞ ¼

qvkðx; pÞ

qxm

1

2p

Z 1

�1

e�ioteiat dt

¼ �S
kmdaðoÞ: ð86Þ

Likewise, the second derivatives �SS
kmnðo; a;bÞ for static

x0ðtÞ and p0ðtÞ read

d2v̂ko½xð�Þ; pð�Þ�

dx̂madx̂nb

¼
1ffiffiffiffiffiffi
2p

p

Z 1

�1

e�iot d2

dx̂madx̂nb

vk

1ffiffiffiffiffiffi
2p

p

Z 1

�1

eigtx̂1g dg; ::; pðtÞ
� �

dt

¼
1

ð2pÞ3=2

Z 1

�1

e�iot q
2vkðxðtÞ; pðtÞÞ

qxmdxn

eiateibt dt

¼
q2vk

qxmqxn

1ffiffiffiffiffiffi
2p

p daþbðoÞ ¼
1ffiffiffiffiffiffi
2p

p �SS
kmndaþbðoÞ: ð87Þ

The delta distributions in Eqs. (80) and (81) show
that, to linear order, an oscillatory perturbation of a
parameter leads to a velocity oscillation at the same
frequency. The reason for this is that the derivatives in
Eq. (78) are invariant under a shift of time and that the
Fourier basis consists of eigenvectors of the time-shift
operator, so Fourier components of different frequen-
cies cannot be mixed. Likewise, to second order, two
perturbations of frequencies a and b yield a velocity
oscillation of frequency aþ b: The factor 1=

ffiffiffiffiffiffi
2p

p
in Eqs.

(82)–(84) is due to the convention chosen for the Fourier
transformations in Eqs. (26)–(28) with 1=

ffiffiffiffiffiffi
2p

p
as a

prefactor.

A.2. Computing the first-order spectral response

coefficients

To derive Eqs. (46) and (47) for the spectral response
coefficients, we first assume that no conservation
relations hold, so N has full rank. The differential
Eq. (23) in the form

d

dt
s½pð�Þ�ðtÞ ¼ Nj½pð�Þ�ðtÞ ð88Þ

is Fourier-transformed:

0 ¼
1ffiffiffiffiffiffi
2p

p

Z 1

�1

eiotðioŝlo½p̂ð�Þ� � Nlkĵko½p̂ð�Þ�Þdo (89)

) 0 ¼ ioŝlo½p̂ð�Þ� � Nlkĵko½p̂ð�Þ� for all o: (90)

Eq. (90) is differentiated with respect to the Fourier
component of pm at frequency a

0 ¼
d

dp̂ma
ðioŝlo½p̂ð�Þ� � Nlkĵko½p̂ð�Þ�Þ

¼ ioRS
lmðo; aÞ � NlkRJ

kmðo; aÞ: ð91Þ
With

ĵko½p̂ð�Þ� ¼ v̂ko½s½pð�Þ�; pð�Þ� (92)

and using the chain rule, RJ
kmðo; aÞ can be expressed by

RJ
kmðo; aÞ ¼

dĵko½p̂ð�Þ�

dp̂ma

¼

Z 1

�1

dv̂ko½s½pð�Þ�; pð�Þ�

dx̂ng

dŝng½p̂ð�Þ�

dp̂ma
dg

þ
dv̂ko½s½pð�Þ�; pð�Þ�

dp̂ma

¼

Z 1

�1

�S
knðo; gÞR

S
nmðg; aÞdgþ �P

kmðo; aÞ: ð93Þ

Inserting this into Eq. (91) yields

0 ¼ ioRS
lmðo; aÞ � Nlk

Z 1

�1

�S
knðo; gÞR

S
nmðg; aÞdg

� Nlk�
P
kmðo; aÞ: ð94Þ

We assume that the unperturbed parameters p0ð�Þ are
static, thus yielding a static s0ð�Þ: Inserting Eqs. (80) and
(81) into (94) yields

0 ¼ ioRS
lmðo; aÞ � Nlk

Z 1

�1

�S
kndgðoÞR

S
nmðg; aÞdg

� Nlk�
P
kmdaðoÞ

¼ ðiodln � Nlk�
S
knÞR

S
nmðo; aÞ � Nlk�

P
kmdaðoÞ: ð95Þ

Solving this for RS
lmðo; aÞ yields, in matrix notation,

RSðo; aÞ ¼ �ðN�S � ioIÞ�1N�PdaðoÞ: (96)

At this point, we have to account for possible
conservation relations: if conservation relations hold
among the metabolites, then N�S � ioI will not be
invertible. To fix this problem, we first restrict the
analysis to the independent metabolites, replacing N by
NR and �s by �sL: The matrix NR�SL � ioI is guaranteed
to be invertible because NR�SL is regular by assumption.
Finally, the resulting response coefficients matrix for
the independent metabolites must be premultiplied with
L to yield a response coefficients matrix for all
metabolites:

RSðo; aÞ ¼ �LðNR�
SL � ioIÞ�1NR�

PdaðoÞ: (97)

From Eq. (93), together with Eqs. (80) and (81) follows

RJðo; aÞ ¼ �SRSðo; aÞ þ �PdaðoÞ: (98)

Why did we restrict our analysis to perturbation of
steady states? For an expansion around a time-
dependent s½p0�ð�Þ; the integral Eq. (94) may be solved
by a Neumann integral series. This series, however,
converges only for large joj and is numerically hard to
handle, so we will not consider it further.
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A.3. Computing the second-order response coefficients

The second-order response coefficients RS;2 and RJ;2

are computed in the same way: we first take the second
derivative of Eq. (90):

0 ¼
d2

dp̂madp̂nb
ðioŝlo½p̂ð�Þ� � Nlkv̂ko½p̂ð�Þ�Þ

¼ ioRS;2
lmnðo; a; bÞ � NlkRJ;2

kmnðo; a; bÞ: ð99Þ

To keep the formulae clear, we shall omit the functional
arguments ½p̂ð�Þ� and ½s½pð�Þ�; pð�Þ� in the following.
RJ;2

kmnðo; a;bÞ reads

RJ;2
kmnðo; a;bÞ ¼

d2 ĵko

dp̂madp̂nb

¼
d

dp̂ma

Z 1

�1

dv̂ko

dx̂rg

dŝrg

dp̂nb
dgþ

dv̂ko

dp̂nb

 !
ð100Þ

¼

Z 1

�1

d
dp̂ma

dv̂ko

dx̂rg

� �
dŝrg

dp̂nb

þ
dv̂ko

dx̂rg

d
dp̂ma

dŝrg

dp̂nb

 !
dgþ

d
dp̂ma

dv̂ko

dp̂nb

ð101Þ

¼

Z 1

�1

Z 1

�1

d2v̂ko

dx̂qZdx̂rg

dŝqZ

dp̂ma
dZþ

d2v̂ko

dp̂madx̂rg

� �

�
dŝrg

dp̂nb
þ

dv̂ko

dx̂rg

d2ŝrg

dp̂madp̂nb
dg

þ

Z 1

�1

d2v̂ko

dx̂qgdp̂nb

dŝqg

dp̂ma
dgþ

d2v̂ko

dp̂madp̂nb

ð102Þ

¼

ZZ 1

�1

�SS
kqrðo; Z; gÞR

S
qmðZ; aÞR

S
rnðg;bÞdZdg

þ

Z 1

�1

ð�SP
krmðo; g; aÞR

S
rnðg; bÞ

þ �S
krðo; gÞR

S;2
rmnðg; a; bÞ

þ �SP
kqnðo; g;bÞRqmðg; aÞÞdg

þ �PP
kmnðo; a; bÞ: ð103Þ

If the unperturbed time courses p0 and s0 are static,
inserting Eqs. (80)–(84) yields

RJ ;2
kmnðo; a;bÞ ¼

ZZ 1

�1

1ffiffiffiffiffiffi
2p

p �SS
kqrdo�gðZÞRS

qmðZ; aÞ
Fig. 6. Forced oscillations in the glycolysis model Hynne et al. (2001). The

(denoted by storage) was perturbed by harmonic oscillations (compare Fig. 5)

function of time (in minutes). The remaining diagrams show the resulting fo

state values (straight solid line). The metabolite concentrations are sorted by t

value). Solid curve: numerical solution (after a simulation of 30 oscillation pe

approximations (dashed line) calculated from the spectral response coefficien

oscillations. Bottom half: Forced oscillations of the metabolic fluxes.
�RS
rnðg;bÞdZdg

þ

Z 1

�1

�S
krdgðoÞR

S;2
rmnðg; a; bÞ

�

þ
1ffiffiffiffiffiffi
2p

p �SP
krmdo�aðgÞRS

rnðg;bÞ

þ
1ffiffiffiffiffiffi
2p

p �SP
kqndo�bðgÞRqmðg; aÞ

�
dg

þ
1ffiffiffiffiffiffi
2p

p �PP
kmndaþbðoÞ

¼
1ffiffiffiffiffiffi
2p

p

Z 1

�1

�SS
kqrR

S
qmðo� g; aÞRS

rnðg; bÞdg
�

þ
ffiffiffiffiffiffi
2p

p
�S

krR
S;2
rmnðo; a;bÞ

þ �SP
krmRS

rnðo� a;bÞ þ �SP
kqnRqmðo� b; aÞ

þ �PP
kmndaþbðoÞ

�
:

Inserting Eqs. (46) for RSðo; aÞ yields

RJ;2
kmnðo; a; bÞ ¼

1ffiffiffiffiffiffi
2p

p ½�SS
kqrR

S
qmðaÞR

S
rnðbÞdaþbðoÞ

þ
ffiffiffiffiffiffi
2p

p
�S

krR
S;2
rmnðo; a;bÞ

þ �SP
krmRS

rnðbÞdaþbðoÞ

þ �SP
kqnRqmðaÞdaþbðoÞ

þ �PP
kmndaþbðoÞ� ð104Þ

¼ �S
krR

S;2
rmnðo; a; bÞ

þ
1ffiffiffiffiffiffi
2p

p Gkmnðo; a; bÞdaþbðoÞ ð105Þ

with the shortcut

Gkmnða; bÞ :¼�SS
kqrR

S
qmðaÞR

S
rnðbÞ þ �SP

krmRS
rnðbÞ

þ �SP
kqnRqmðaÞ þ �PP

kmn: ð106Þ

Inserting this into Eq. (99) yields

0 ¼ ðiodlr � Nlk�
S
krÞR

S;2
rmnðo; a; bÞ

�
1ffiffiffiffiffiffi
2p

p NlkGkmnða; bÞdaþbðoÞ: ð107Þ

By solving this equation for RS;2; using definition (39),
and addressing possible conservation relations as above,
we obtain

RS;2
jmnðo; a;bÞ ¼

1ffiffiffiffiffiffi
2p

p CS
jkðoÞGkmnða; bÞdaþbðoÞ: ð108Þ
rate constant k22 of the energy storage reaction G6P + ATP ! ADP

. Top half: The top left diagram shows the perturbed parameter k22 as a

rced oscillations of the metabolite concentrations around their steady

heir relative response (i.e. oscillation amplitude divided by steady-state

riods). The other curves show first-order (dotted line) and second-order

ts. The second-order term allows the curves to deviate from harmonic
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With Eq. (105) follows

RJ;2
lmnðo; a;bÞ ¼

1ffiffiffiffiffiffi
2p

p ð�S
lrC

S
jkðoÞ þ dlkÞGkmnða;bÞdaþbðoÞ

¼
1ffiffiffiffiffiffi
2p

p CJ
lkðoÞGkmnða;bÞdaþbðoÞ: ð109Þ
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