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Abstract

Balanced truncation is an established method for reducing large

linear dynamical systems. Metabolic pathways are usually surrounded

by a large metabolic network, the “environment”. In order to simplify

it, we employ linearisation and balanced truncation and construct a

small black-box model that mimicks its behaviour - as seen by the

subsystem of interest. To illustrate this procedure, we apply it to a

mathematical model of glycolysis in yeast.

1 Introduction

As mathematical models in cell biology grow to larger sizes, complexity re-
duction becomes an important issue: models - or parts of them - are re-
placed by effective models that are easier to solve and that are supposed to
reproduce, with sufficient precision, the results of the original model. In the
context of control theory, the reduction of linear models has been studied for
a long time, and various methods have been proposed [1]. One of them is
balanced truncation [2], which is numerically demanding, but yields a stable
reduced system with a bounded approximation error. Moreover, by tuning
the dimensionality, one can choose a compromise between approximation ac-
curacy and numerical efficiency. Balanced truncation has successfully been
applied to linear control systems of high state-space dimensions (see [3] and
the examples therein). Importantly, balanced truncation does not rely on a
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time scale separation of fast and slow processes (see, for instance, [4] [5]),
but removes parts of the dynamics that contribute little to the input-output
relation of the system.

Here we apply balanced truncation to metabolic models. As metabolic
systems are usually nonlinear, and as linearising may change their behaviour
considerably, we restrict ourselves to a special application: a small system
of interest (a pathway) is embedded in a larger environment (a metabolic
network). Usually, this environment is described by fixed concentrations. In
order to construct a model that is more accurate, but still easy to solve, we
start with a model of the entire system and use model reduction to obtain
a dynamic black-box model of the environment. This effective model can
provide the system of interest with dynamical boundary conditions, and the
reduced variables describe the dynamical modes in the environment that
dominate its interaction with the subsystem.

This paper is a shortened version of the article [6], in which the mathe-
matical details are treated at length. As an illustrative example, we added
the application to the glycolysis model of Hynne et al. [7]. The author likes
to thank U. Baur and E. Klipp who participated in the project. This work
was funded by the European commission, grant 503269.

2 Model reduction by balanced truncation

2.1 Linear models

Let us first outline the idea of model reduction: we consider a linear dynam-
ical system of the standard (vectorial) form

ẋ(t) = A x(t) + B u(t), t > 0, x(0) = x0

y(t) = C x(t) + D u(t), t ≥ 0. (1)

The system comprises n state variables xi, which are controlled by m input
variables uk and can be observed via the p output variables yl. We postulate
that for u = 0, the system has a steady state at x = 0. For fixed initial
conditions, any time course u(·) of the controlling variables leads to a time
course y(·) of the observables.

The same input-output relation can be exactly represented by a system
with transformed variables x̂. If T is an invertible n×n matrix, we can apply
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the transformation

x → x̂ = Tx

A → Â = TAT−1

B → B̂ = TB

C → Ĉ = CT−1

without changing the input-output relation between u(·) and y(·).

2.2 Model reduction

In model reduction, we replace the system (1) by a lower-dimensional system
of order r (r � n) that yields a good approximation of the input-output
relation. For a chosen dimensionality r, we can split T =

(

T1

T2

)

, T−1 = (S1S2)
with an r × n matrix T1 and an n × r matrix S1. The transformation

x → x̃ = T1x

A → Ã = T1AS1

B → B̃ = T1B

C → C̃ = CS1 (2)

yields a reduced model of dimension r

˙̃x(t) = Ã x̃(t) + B̃ u(t), t > 0, x̃(0) = x̃0

ỹ(t) = C̃ x̃(t) + D u(t), t ≥ 0
(3)

that approximates the input-output relation. For a broad collection of sur-
vey papers on model reduction, see [1], where also a couple of benchmark
examples are presented.

2.3 Balanced truncation

Closely connected with the stable, continuous-time system (1) are the two
matrices P and Q, the infinite reachability Gramian and the infinite observ-
ability Gramian:

P :=

∫

∞

0

eAtBBT eAT t dt, Q :=

∫

∞

0

eAT tCT CeAt dt.
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The Gramians can be computed by solving the Lyapunov equations

AP + PAT + BBT = 0

ATQ + QA + CTC = 0. (4)

Model reduction by balanced truncation1 [2] is based on a special transfor-
mation into so-called balanced coordinates. The basic concept of balancing
is finding a basis in which the two Gramians are equal and diagonal

P = Q = diag(σ1, . . . , σn),

with ordered diagonal entries σi, the Hankel singular values of the system.
In these new coordinates, states that are difficult to control are also difficult
to observe and vice versa. Model reduction by balanced truncation removes
these state components.

Model reduction by balanced truncation has some desirable properties:
the reduced system (3) remains stable and has a low approximation error
with an a priori known upper bound. Therefore, the size of the reduced
system can be chosen adaptively depending on the permitted error size.

3 Selective reduction of biochemical models

Metabolic systems have to be linearised before reduction, which may in many
cases produce unacceptable approximation errors. Still, balanced truncation
can be useful for simplifying parts of a model that are (i) large, (ii) close to
a stable steady state, and (iii) uninteresting, except for their input-output
relation. This holds for the large parts of the cell that are usually neglected in
modelling - because they only surround the metabolic pathways of interest.

Modelling of biochemical systems usually zooms in on certain pathways,
while the concentrations of so-called external metabolites are considered
fixed. This approximation ignores feedback loops mediated by the envi-
ronment, that is, via external metabolites and reactions. To achieve a more
realistic, dynamical description that is still numerically efficient, we describe
the environment by a linear effective model of adjustable dimensionality. In
particular, we (i) split the entire model into a subsystem and its environment,

1Matlab code for balanced truncation can be found at

www-user.tu-chemnitz.de/∼benner/software.php
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Figure 1: Schematic picture of selective model reduction. Left diagram:
a biochemical network comprising metabolites (circles) and reactions (little
boxes). The system is divided into a subsystem of interest (left half) and its
environment (right half). Both systems are only connected by the commu-
nicating metabolites (boundary of the subsystem) and the communicating
reactions (boundary of the environment). Right diagram: the environment
part of the model has been replaced by an effective (black-box) model that
senses the communicating metabolites and computes - approximately - the
velocities of the communicating reactions.

(ii) linearise the environment model around a steady state, and (iii) reduce
its dimensionality by balanced truncation.

Let us recall some basic definitions for biochemical network models [8]
[9]: a metabolic system is described by the differential equation system

ṡ(t) = Nv(s(t),p) (5)

where s is the vector of metabolite concentrations and v is the vector of
reaction velocities. The vector p contains the kinetic parameters, and the
stoichiometric matrix N contains in its kth column the stoichiometric coeffi-
cients for the kth reaction.

We now assume that only a subsystem (e.g., a certain metabolic pathway)
is in the focus of interest. As shown in Figure 1, the entire system can be
split into subsystem and environment which influence each other only via
certain communicating metabolites and reactions, which are located in the
boundaries.

We aim at maintaining the subsystem in its original form while replacing
the environment by a linear model of lower dimensionality. To obtain such
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a reduced, effective model, we first linearise the environment model around
some stable steady state (the “reference” state), and introduce the deviations

x = ∆sext = sext − s̄ext

u = ∆sbnd = sbnd − s̄bnd

y = ∆vbnd = vbnd − v̄bnd. (6)

The bars refer to the reference values, while sub- and superscripts “bnd”
and “ext” indicate the boundaries and the the external region. If the model
parameters depend on time, then their deviations ∆p(t) can also be incor-
porated into u. Altogether, we can rewrite the entire system as a coupled
equation system for internal concentrations s and external deviations x

u(t) = P s(t) − s̄bnd

ẋ(t) = A x(t) + B u(t)

y(t) = C x(t) + D u(t)

vbnd(t) = v̄bnd + y(t)

ṡ(t) = N v(s(t),p(t)) + Nbnd vbnd(t). (7)

The matrix P projects the subsystem metabolites to the boundary metabo-
lites. The matrices A, B, C, D can be computed from the stoichiometric ma-
trix and the reaction elasticities (see [6]). The equation system (7) consists
of (i) a model of the subsystem with external fluxes vbnd (last equation), (ii)
a linear model of the standard form (1), describing the environment (second
and third equation), and (iii) instructions on how to match both modules
(first and fourth equation).

To reduce the environment part of the model (the equations for ẋ and y),
we replace x by a low-dimensional vector x̃ as described in section 2.2, and the
matrices A, B, C are transformed accordingly. The new, reduced variables
do no longer represent individual metabolites, but global dynamical modes
that are most strongly involved in the feedback from boundary metabolites
to boundary reactions.

4 Example: glycolysis in yeast

We applied model reduction to the glycolysis model of Hynne et al. [7] (as
published in the JWS online model database [10]), which describes the pro-
duction and consumption of energy in a suspension of yeast cells. The
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Figure 2: Metabolic model [7] of glycolysis in yeast. Metabolites and reac-
tions are shown as circles and boxes, respectively. Model reduction is applied
to the environment (white symbols), while the subsystem of interest (shaded
symbols) is maintained in its original form.

model describes the concentrations of 17 metabolite inside the cells and 5
metabolites in the growth medium. The parameter values were determined
in [7] at the onset of glycolytic oscillations. For a low Glucose concentration
Glcx0=5.0 in the inflowing medium, the system has a stable steady state. In
order to focus on the actual glycolysis pathway, we regard glycerol, ethanol,
acetaldehyde, and external cyanide as external metabolites forming the en-
vironment. The metabolic network and its subdivision into subsystem and
environment is shown in Figure 2.

Figure 3 shows results from dynamic simulations. Initially, the system is
in its steady state, except for the external Glucose concentration, which as-
sumes a higher concentration. Fixing the external concentrations changes the
results considerably, while a reduced environment model with two variables
yields a much better approximation.

Changes of the reduced variables correspond to changes of the external
metabolites: the linear relation between them is given by the transformation
weights contained in the matrix S1. The columns of S1 are shown in Figure
3: the large white circles (negative values) in the left panel show that x1

mainly represents a decrease of intracellular acetaldehyde and ethanol. The
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Figure 3: Simulation and reduction of the glycolysis model [7]. Top left: time
courses of metabolite concentrations after a pulse of Glucose in the growth
medium. The panels at top and bottom show the internal and external
metabolites (as indicated in the network in Figure 2). Top right: Fixing
the external concentrations at their steady-state values has a strong effect
on the simulation results. Bottom left: Mimicking the environment by a
two-dimensional effective model almost restores the simulation results of the
original model. The external variables (bottom) are approximated by a linear
combination of the reduced variables. Bottom right: time courses of the two
reduced variables x1 and x2.
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Figure 4: Transformation weights for the reduced variables. The change of
a variable approximately corresponds to a change of the original external
variables. The weights (elements of the matrix S1 for the different exter-
nal variables (compare Figure 2) are shown by circles: their size indicates
the absolute value, black and white indicate positive and negative values,
respectively.) Left: transformation weights for the variable x1. Right: trans-
formation weights for x2.

variable x2 mainly stands for an increase of acetaldehyde and a decrease of
ethanol.
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