Whole cell modeling

Wolfram Liebermeister, INRA Jouy-en-Josas wolfram.liebermeister@gmail.com

PSL-ITI – Course "Modelling and engineering of biological systems"

How can a living being emerge from non-living matter?

How can a living cell emerge from sugar, water, and a couple of salts?

Minimal Medium for E. coli					
Glucose	5 g/l				
$Na_{2}HPO_{4}$	6 g/l				
KH ₂ PO ₄	3 g/l				
NH ⁴ CI	1 g/l				
NaCl	0.5 g/l				
$MgSO_4$	0.12 g/l				
CaCl ₂	0.01 g/l				

How can a living cell emerge from sugar, water, and a couple of salts?

How fast can this happen?

How much energy and material will be "wasted"?

Minimal Medium for <i>E. coli</i>					
Glucose	5 g/l				
$Na_{2}HPO_{4}$	6 g/l				
KH ₂ PO ₄	3 g/l				
NH_4CI	1 g/l				
NaCl	0.5 g/l				
$MgSO_{_4}$	0.12 g/l				
CaCl ₂	0.01 g/l				

How can a living cell emerge from sugar, water, and a couple of salts?

How fast can this happen?

How much energy and material will be "wasted"?

Minimal Medium for <i>E. coli</i>					
Glucose	5 g/l				
$Na_{2}HPO_{4}$	6 g/l				
KH ₂ PO ₄	3 g/l				
NH_4CI	1 g/l				
NaCl	0.5 g/l				
$MgSO_4$	0.12 g/l				
CaCl ₂	0.01 g/l				

L'essentiel est invisible pour les yeux.

Budding yeast (microscope picture of a cell)

Budding yeast (relative protein abundances)

Initial questions for this lecture

- What does a living cell need to do to proliferate, i.e., to reproduce all its components?
- How can it do so in "cost-saving" ways, given physical and biochemical limitations?
- If cells function "optimally", how will they behave and what will they look like?
- How can we describe all this by mathematical models?

Analogy: a self-replicating factory

- We consider a factory that produces all the machines it contains, and needs to reproduce itself
- If we know all possible types of machines in this factory, can we predict their optimal numbers?
- Can we predict how these numbers will change depending on energy supply (or energy cost), the need to produce extra products to be sold, the threat of machine failures, etc?

Three requirements for living cells to survive

- Cells are alive and fragile they need to be able to **reproduce (almost) all of their parts**
- Cells are dynamic they need to coordinate and regulate all these processes
- Cells compete they need to replicate faster, and be more efficient or resilient than others

So .. what do we need to study the "economics" of self-replication?

- A **blueprint of the cell** in question
- Simulation models for cellular processes (e.g., metabolism and protein production), implementing physical laws and biochemical facts
- Ideas about cells "should" function, formulated as mathematical optimality problems

Three levels of description

- "Topics" (in the sense of "components and layout")
- Dynamics
- Economics (flows of production, and allocation of resources)

Why is fast reproduction a relevant task?

- Fast replication (or withstanding harsh conditions) can be critical for cell survival. Thus, **evolutionary pressures may already have shaped cells** to be "economical"
- In biotechnology, one needs to understand the biological systems that one manipulates (not only how they work physically, but also how they are adjusted to work well).

Genetic modifications that put little burdens on cells are preferable: they increase production or cell growth and reduce the risk to be outcompeted by burden-free mutants.

- Among the many things cells need to do (to survive and proliferate in the long run), self-replication under constant conditions is one important task. it is easier to understand than many other tasks (can you think of such other tasks?)
- Self-replication is just interesting! A machine that copies itself; a programming language whose compiler is written in the language itself; snowball systems; ...

Part 1: Topics* - A blueprint of the cell

* from topos, place

Microbial cells – external appearance

Escherichia coli bacteria

Budding yeast Saccharomyces cerevisiae

What do you know about cells?

Microbial cells – internal structure

R. Milo and R. Phillips, Cell biology by the numbers

Molecule types and sizes

Metabolic networks and their regulation

(a) Allosteric regulation

(b) Transcriptional regulation

Chemical composition of a cell

sum of concentrations \approx 200 mM

macromolecule	percentage of total dry weight	weight per cell (fg)	characteristic molecular weight (Da)	number of molecules per cell
protein	55	165	3 x 10 ⁴	3,000,000
RNA	20	60		
23 S rRNA		32	1 x 10 ⁶	20,000
16 S rRNA		16	5 x 10 ⁵	20,000
5 S rRNA		4 1	4 x 10 ⁴	20,000
transfer		9	2 x 10 ⁴	200,000
messenger		_ 2	1 x 10 ⁶	1,400
DNA	3	9	3 x 10 ⁹	2
lipid	9	27	800	20,000,000
lipopolysaccharide	3	9	8000	1,000,000
peptidoglycan	3	9	(1000) _n	1
glycogen	3	9	1 x 10 ⁶	4,000
metabolites and cofactors pool	3	9	 composition rules of thumb carbon atoms ~10¹⁰ 1 molecule per cell gives ~1 nM conc. ATP required to build and maintain cell over a cell cycle ~10¹⁰ glucose molecules needed per cell 	
inorganic ions	1	3		
total dry weight	100	300		
water (70% of cell)		700		
total cell weight		1000 cycle $\sim 3x10^9$ (2/3 of carbons used for biomass and 1/3 used for ATP)		

Molecule numbers in bacterial cells

Protein "investment" in functional subsystems

- "Central dogma": Production of DNA, RNA, and protein
- Metabolism
- Membranes and transport
- Stress reponse, repair
- ... and many others

Bionumbers website: relevant numbers for cell biology

Developed by Ron Milo, please send me your <u>feedback</u> (data to add, errors found or a thumbs up...)

http://bionumbers.hms.harvard.edu

Book by R. Milo and R. Phillips, Cell biology by the numbers

Guess some (typical) numbers

- What is the volume of a cell? ..
- What is the size of a protein?
- How many protein molecules exist in a cell?
- What is the number of genes?
- How long does it take to transcribe a gene?
- How long does it take to produce a protein molecule?
- What is the minimal doubling time of a cell?
- What other questions come to your mind?

Precise values do not matter here – think about orders of magnitude Work in pairs and check the results at http://bionumbers.hms.harvard.edu

Cells – some typical numbers

property	E. coli	budding yeast	mammalian (HeLa line)
cell volume	0.3–3 μm ³	30–100 μm ³	1,000–10,000 μm ³
proteins per µm ³ cell volume		2-4×10 ⁶	
mRNA per cell	10 ³ -10 ⁴	10 ⁴ -10 ⁵	10 ⁵ -10 ⁶
proteins per cell	~10 ⁶	~10 ⁸	~10 ¹⁰
mean diameter of protein	0	4–5 nm	
genome size	4.6 Mbp	12 Mbp	3.2 Gbp
number protein coding genes	4300	6600	21,000
regulator binding site length	4	10–20 bp	
promoter length	~100 bp	~1000 bp	~10 ⁴ -10 ⁵ bp
gene length	~1000 bp	~1000 bp	~10 ⁴ –10 ⁶ bp (with introns)
concentration of one protein per cell	~1 nM	~10 pM	~0.1–1 pM
diffusion time of protein across cell (D \approx 10 μ m ² /s)	~0.01 s	~0.2 s	~1-10 s
diffusion time of small molecule across cell (D $\approx 100 \ \mu m^2/s)$	~0.001 s	~0.03 s	~0.1-1 s
time to transcribe a gene	<1 min (80 nts/s)	~1 min	~30 min (incl. mRNA processing)
time to translate a protein	<1 min (20 aa/s)	~1 min	~30 min (incl. mRNA export)
typical mRNA lifetime	2–5 min	~10 min to over 1 h	5-100 min to over 10 h
typical protein lifetime	1 h	0.3–3 h	10–100 h
minimal doubling time	20 min	1 h	20 h
ribosomes/cell	~10 ⁴	~10 ⁵	~10 ⁶
transitions between protein states (active/inactive)		1–100 μs	
timescale for equilibrium binding of small molecule to protein (diffusion limited)	per-	— 1–1000 ms (1 μM–1 nM affi	nity)
timescale of transcription factor binding to DNA site		~1 s	
mutation rate	60		n ———