
An introduction to modelling
of biological systems



Overview

Part I - Kinetic modeling
● What is modelling about?
● Kinetic models of biochemical pathways
● Simulation and dynamic behaviour
● Model fitting

Part II - Constraint-based modelling
● Network reconstruction
● Flux Balance Analysis (FBA)

Part III - Other dynamical cell models
●  Whole-cell models
●  Gene expression models
●  Stochastic simulation
●  Spatial simulation models
●  Model formats and tools

Part IV - Data analysis and regression
●  Principal Component Analysis
●  Clustering
●  Linear regression

Blackboard session (Wednesday / Thursday) 
●  Advanced kinetic modelling and enzyme costs



How can a living cell emerge from 
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L'essentiel est invisible pour les yeux.
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sugar, water, and a couple of salts?





From pictures of cells to mathematical models



Simulation models are simple pictures of cells, 
in a mathematical form



How can we translate network schemes
into simulation models? 
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Modelling approaches cover different levels of complexity



What kinds of questions do we want to answer?

● What compounds can the cell produce, and on what media can it survive?

● What do the metabolic fluxes look like?

● How do fluxes and metabolite levels respond to varying conditions?

● How would a mutation change the cell state? 

● How big are the differences between individual cells?

● ...

● How can we answer all these questions with limited data?



Kinetic models of metabolic pathways
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Kinetic rate law: “mass-action kinetics”
How often does the reaction occur per time ?
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Kinetic models describe the dynamics of biochemical reactions
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The irreversible Michaelis-Menten rate law
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The irreversible Michaelis-Menten rate law
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Variables:
● Substrate concentration s

● Enzyme concentration E

Parameters:

● K
M
 value (in mM): inverse binding affinity 

● Catalytic constant k
cat

 (in 1/s)

Maximal number of conversions 
    per time and enzyme molecule



Dynamic behaviour and steady states



Differential equations describe the change in a moment -
numerical integration yields the overall behaviour in time



Differential equations describe the change in a moment -
numerical integration yields the overall behaviour in time

A simple way to solve differential 
equations numerically (“Euler method”)
  
● Consider fixed, small time step!
● Start with initial values s(t=0)
● Use the updating rule: 

● Repeat the last step many times 



Dynamic behaviour depends on small details of a model



In steady states, all substance levels remain constant in time

Stationary (=steady) state
A state in which all variables remain constant in time

Stationarity condition in kinetic models

Condition on the flux vector
Kinetic rate laws do not play a role!

Intracellular metabolites (dynamic)
→ Concentration varies due to chemical reactions

External metabolites (e.g. extracellular or buffered)
→ Treated as fixed parameters

Linear pathway Branch point



An example: transcription rate and mRNA expression level

Transcription
v(t)

x

Degradation
k * x(t)

Expression value x(t)
(mRNA level)

Exercise 1: 
Write down the differential equation for x

Exercise 2: 
Solve the equation. Assume that x(0) = 10 nM, k = 1 /min, and v(t) = 0. 

Exercise 3: 
Assume a constant v(t) = 20 nM/s, k=0.1 / min, and determine the steady-state value of x. 



Dynamic behaviour in time and in phase space



Dynamic behaviour in time and in phase space



Mutual inhibition can lead to bistability 
as a systemic behaviour



Mutual inhibition can lead to bistability 
as a systemic behaviour



Metabolic control: 
quantifying the effects of parameter changes



  

Parameter change
higher substrate supply?

Metabolic change 
altered concentrations?
redirected fluxes?

Metabolic control analysis studies the systemic effects 
of local parameter perturbations

Response 
coefficients



  

Parameter change
higher substrate supply?

Metabolic change 
altered concentrations?
redirected fluxes?

1. Stationary concentrations s(p)

2. Response coefficients

Local cause:
e.g., single enzyme level

Systemic effect:
 flux or concentration

Slope at standard state = 
“response coefficient”

Response 
curve

Response 
coefficients

Solution of 

Metabolic control analysis studies the systemic effects 
of local parameter perturbations



Local perturbations, in the long run, 
change the entire metabolic state

Two types of sensitivities in metabolic control analysis:
● Reaction elasticities
● Response (or control) coefficients



Model parameters, variability,
and model structure



Reversible Michaelis-Menten kinetics

Reversible mass-action kinetics (non-enzymatic)

A problem in kinetic modelling: each enzyme is different !!

How can we obtain all the necessary parameters ??



 Haldane relationshipChemical equilibrium

Another problem: parameters may depend on each other!

Thermodynamic laws lead to dependencies between kinetic parameters

Thermodynamic constraints

Reversible Michaelis-Menten kinetics



How can we choose between two models?

Models before parameter fitting Models after parameter fitting

Model A Model BTrue model (unknown)

Some methods for model selection: Cross-validation – “Selection criteria” – Bayesian model selection



How models can be simplified 
(hopefully, without losing too much accuracy)



Variability and uncertainty of parameters can be 
mathematically described

Some questions we might care about:
● What parameters have a strong effect on model behaviour?
● What model outputs are strongly affected?
● Under what parameter changes does the qualitative behaviour change, and how?
● If a parameter varies between cells, how much variation do we expect in the model output?
● If we are uncertain about a parameter, how uncertain will we be about model outputs?



Thank you !
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