An introduction to modelling of biological systems

H HI F

HHHH T THE HHHH

Overview

Part I - Kinetic modeling

- What is modelling about?
- Kinetic models of biochemical pathways
- Simulation and dynamic behaviour
- Model fitting

Part II - Constraint-based modelling

- Network reconstruction
- Flux Balance Analysis (FBA)

Part III - Other dynamical cell models

- · Whole-cell models
- · Gene expression models
- Stochastic simulation
- Spatial simulation models
- Model formats and tools

Part IV - Data analysis and regression

- Principal Component Analysis
- Clustering
- Linear regression

Blackboard session (Wednesday / Thursday)

Advanced kinetic modelling and enzyme costs

How can a living cell emerge from sugar, water, and a couple of salts?

Minimal Medium for E. col	
Glucose	5 g/l
Na ₂ HPO ₄	6 g/l
KH_2PO_4	3 g/l
NH ₄ Cl	1 g/l
NaCl	0.5 g/l
$MgSO_4$	0.12 g/l
CaCl ₂	0.01 g/l

How can a living cell emerge from sugar, water, and a couple of salts?

Minimal Medium for E. col	
Glucose	5 g/l
Na_2HPO_4	6 g/l
KH ₂ PO ₄	3 g/l
NH_4CI	1 g/l
NaCl	0.5 g/l
$MgSO_4$	0.12 g/l
CaCl ₂	0.01 g/l

L'essentiel est invisible pour les yeux.

From pictures of cells to mathematical models

Simulation models are simple pictures of cells, in a mathematical form

How can we translate network schemes into simulation models?

Modelling approaches cover different levels of complexity

Topological Analysis

Flux Balance Analysis

Kinetic modeling

Dynamics

 $v_1 + v_2 = v_3$

What kinds of questions do we want to answer?

- What compounds can the cell produce, and on what media can it survive?
- What do the metabolic fluxes look like?
- How do fluxes and metabolite levels respond to varying conditions?
- How would a mutation change the cell state?
- How big are the differences between individual cells?
- ...
- How can we answer all these questions with limited data?

Kinetic models of metabolic pathways

Kinetic rate law: "mass-action kinetics" How often does the reaction occur per time ?

Kinetic rate law: "mass-action kinetics" How often does the reaction occur per time ?

System equations How do the concentrations change over time?

 $da/dt = -v_1$ $db/dt = v_1 - v_2$ $dc/dt = v_2$

Kinetic rate law: "mass-action kinetics" How often does the reaction occur per time ?

System equations How do the concentrations change over time?

 $da/dt = -v_1$ $db/dt = v_1 - v_2$ $dc/dt = v_2$

System equations – a more complicated example

Differential equations (ODEs) $d[S_1]/dt = v_1 - v_2$ $d[S_2]/dt = v_3 - v_4$ $d[S_3]/dt = v_5$ $d[S_4]/dt = -v_3 + v_4$

System equations – a more complicated example

Metabolite Concentrations Reaction rates

Stoichiometric Matrix

Differential equations (ODEs) $d[S_1]/dt = v_1 - v_2$ $d[S_2]/dt = v_3 - v_4$ $d[S_3]/dt = v_5$ $d[S_4]/dt = -v_3 + v_4$

System equations – a more complicated example

Differential equations (ODEs)

 $d[S_3]/dt = v_5$

 $d[S_1]/dt = v_1 - v_2$

 $d[S_2]/dt = v_3 - v_4$

 $d[S_4]/dt = -v_3 + v_4$

The irreversible Michaelis-Menten rate law

The irreversible Michaelis-Menten rate law

$$v(S, E) = \underbrace{E \, k_{\text{cat}}}_{V_{\text{max}}} \frac{S}{S + K_M}$$

Variables:

- Substrate concentration s
- Enzyme concentration E

Parameters:

- K_{M} value (in mM): inverse binding affinity
- Catalytic constant k_{cat} (in 1/s) Maximal number of conversions per time and enzyme molecule

Dynamic behaviour and steady states

Differential equations describe the change in a moment numerical integration yields the overall behaviour in time

Differential equations describe the change in a moment numerical integration yields the overall behaviour in time

A simple way to solve differential equations numerically ("Euler method")

- Consider fixed, small time step!
- Start with initial values s(t=0)
- Use the updating rule:

$$s(t + \Delta t) = s(t) + \frac{ds}{dt} \Delta t$$

• Repeat the last step many times

Dynamic behaviour depends on small details of a model

In steady states, all substance levels remain constant in time

$$\frac{\mathrm{d}c}{\mathrm{d}t} = N v = 0$$

Condition on the flux vector Kinetic rate laws do not play a role!

External metabolites (e.g. extracellular or buffered)

 \rightarrow Treated as fixed parameters

Intracellular metabolites (dynamic)

 \rightarrow Concentration varies due to chemical reactions

Stationary (=steady) state A state in which all variables remain constant in time

Linear pathway

$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow$

Increasing fitness

Branch point

An example: transcription rate and mRNA expression level

Exercise 1: Write down the differential equation for x

Exercise 2:

Solve the equation. Assume that x(0) = 10 nM, k = 1 /min, and v(t) = 0.

Exercise 3:

Assume a constant v(t) = 20 nM/s, k=0.1 / min, and determine the steady-state value of x.

Dynamic behaviour in time and in phase space

Dynamic behaviour in time and in phase space

Mutual inhibition can lead to bistability as a systemic behaviour

Mutual inhibition can lead to bistability as a systemic behaviour

Metabolic control: quantifying the effects of parameter changes

Metabolic control analysis studies the systemic effects of local parameter perturbations

altered concentrations? redirected fluxes?

 $\Delta s_i \approx R_{p_m}^{s_i} \,\Delta p_m$

Metabolic control analysis studies the systemic effects of local parameter perturbations

1. Stationary concentrations s(p)

Local perturbations, in the long run, change the entire metabolic state

Two types of sensitivities in metabolic control analysis:

- Reaction elasticities
- Response (or control) coefficients

Model parameters, variability, and model structure

A problem in kinetic modelling: each enzyme is different !!

Reversible mass-action kinetics (non-enzymatic)

$$v = k_+ a - k_- b$$

Reversible Michaelis-Menten kinetics $v = \frac{v_{+}^{\max}(a/k_{A}^{M}) - v_{-}^{\max}(b/k_{B}^{M})}{1 + (a/k_{A}^{M}) + (b/k_{B}^{M})}$

How can we obtain all the necessary parameters ??

Another problem: parameters may depend on each other!

Reversible Michaelis-Menten kinetics

$$v = \frac{v_{+}^{\max}(a/k_{\rm A}^{\rm M}) - v_{-}^{\max}(b/k_{\rm B}^{\rm M})}{1 + (a/k_{\rm A}^{\rm M}) + (b/k_{\rm B}^{\rm M})}$$

Thermodynamic constraints

Thermodynamic laws lead to dependencies between kinetic parameters

Chemical equilibrium

$$0 = v(a^{eq}, b^{eq}) = v_{+}^{max} \frac{a^{eq}}{k_{A}^{M}} - v_{-}^{max} \frac{b^{eq}}{k_{B}^{M}}$$

$$k^{\text{eq}} = \frac{b^{\text{eq}}}{a^{\text{eq}}} = \frac{v_+^{\text{max}} k_{\text{B}}^{\text{M}}}{v_-^{\text{max}} k_{\text{A}}^{\text{M}}}$$

How can we choose between two models?

Models before parameter fitting

Models after parameter fitting

Some methods for model selection: Cross-validation – "Selection criteria" – Bayesian model selection

How models can be simplified (hopefully, without losing too much accuracy)

Variability and uncertainty of parameters can be mathematically described

Some questions we might care about:

- What parameters have a strong effect on model behaviour?
- What model outputs are strongly affected?
- Under what parameter changes does the qualitative behaviour change, and how?
- If a parameter varies between cells, how much variation do we expect in the model output?
- If we are uncertain about a parameter, how uncertain will we be about model outputs?

Thank you !

