
DATA ANALYSIS
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Outline

● Multivariate analysis:
– principal component analysis (PCA)
– visualization of high-dimensional data
– clustering

● Least-squares linear regression
● Curve fitting

– e.g. for time-course data using kinetic models
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High-throughput biology data boom

● (c)DNA micro-arrays
● Next-generation DNA sequencing
● Untargeted Mass-Spec techniques
● Liquid handling robots
● Time-lapse microscopy

your data
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How can we “look” at the data

There is nothing better than a heat map to say:

“we gathered a lot of data ...
but we have no clue what to do with it”

Nicolas Schauer, Yaniv Semel, Ute Roessner, Amit Gur, Ilse Balbo, Fernando Carrari, Tzili Pleban, Alicia Perez-Melis, Claudia Bruedigam, Joachim Kopka, Lothar Willmitzer, Dani Zamir & Alisdair R Fernie
Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement
Nature Biotechnology (2006)
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Principal Component Analysis (PCA)

● A statistical method developed in 1901 by Karl Pearson
● Commonly used to reduce the dimension of the data (e.g. 2D)
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PCA implementation

● Input:
A set of points x1 .. xn in high dimension (Nfeatures)

● Output:
A linear projection to lower dimension that best preserves Euclidean 
distances
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1) Arrange all samples in a (Nfeatures x Nsamples) matrix:

2) Subtract the mean of each feature:

3) Calculate the Singular Value Decomposition:
make sure the eigenvalues are arranged in decreasing order

4) U contains the principal components

PCA implementation

X

~X=X−E(X )

U ΣV T=~X
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Visual example

3D data eigenvectors 2D projection

x y
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PCA pathologies

● Assumes a multivariate Gaussian distribution
● Sensitive to relative scaling of one dimension (e.g. changing units)
● Some data cannot be easily projected into 2D without loosing much 

of the information (e.g. a sphere)
● Not discriminatory - treats all points as one type (doesn't see color)
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Other methods of visualization

● Linear Discriminant Analysis (LDA)
● t-Distributed Stochastic Neighbor Embedding (t-SNE)

https://en.wikipedia.org/wiki/Linear_discriminant_analysis
https://lvdmaaten.github.io/tsne/
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What is clustering?

● The search for “subgroups of similar objects” in a given dataset 
● Objects from one subgroup should be more similar to each other 

than objects from other groups
● Examples:

– finding clusters of genes with similar expression behavior over time
– dividing of a seemingly identical disease into sub-phenotypes
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What is clustering?
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Clustering: K-means

● Input:
A set of points x1 .. xn and an integer K ∈ ℕ

● Output:
An association of points to clusters that minimizes the within-cluster 
sum of squares:

Minimize
C k

∑
k=1

K

∑
x n∈Ck

‖xn−μk‖
2

μk≡
1
Ck

∑
x n∈Ck

xn
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Lloyd's algorithm

1) Randomly pick K points as initial 
cluster means

2) Assign each point to its nearest 
cluster mean:

3) Recompute the mean of each 
cluster:

4) Repeat steps 2 and 3 until 
cluster assignment does not 
change any more

argmin
k

‖xn−μk‖

μk=
1
C k

∑
xn∈C k

xn
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K-means examples
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K-means examples
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K-means pathologies

● Lloyd's algorithm can only find a local optimum, and depends on the 
initialization
Solution: repeat with many randomized initial clusters

● Under-/over- estimating the number of clusters
Solution: run for K = 1..Kmax, and choose one where the average 
within-cluster distance drops significantly

● Clusters that have non-spherical geometry
Solution: use another method, e.g. hierarchical clustering
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Concentric rings clustering with K-means

?
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Concentric rings clustering with K-means
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Clustering: hierarchical

● A sub-class of graph-based algorithms
● Input:

A distance matrix D (size n x n) between each pair of data points
● Output:

A Dendrogram (a tree diagram, whose leaves are the n points)

a b c d e f

ab cd ef
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abcdef
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b c
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Agglomerative hierarchical clustering

● Initialize each point to be a cluster of its own
● Repeat n times:

– calculate the distance* between each two clusters
– join the two most similar clusters



  22

Hierarchical clustering example

euclidean distance

single link
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Hierarchical clustering example
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Hierarchical clustering example

euclidean distance

single link

sample 8 clusters after 0-3 and 9-11 are already in one cluster
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Agglomerative hierarchical clustering

● Initialize each point to be a cluster of its own
● Repeat n times:

– calculate the distance* between each two clusters
– join the two most similar clusters

*distance between two points can be defined, for example, as:

distance between two clusters can be defined, for example, as:
● complete link:
● average link:
● single link:  

d complete(A ,B)=max {Di , j∣x i∈A , x j∈B}

daverage(A , B)=mean {Di , j∣x i∈A , x j∈B}

d single (A , B)=min {Di , j∣x i∈A , x j∈B}

D i , j=‖x i−x j‖2 Di , j=‖xi−x j‖1 D i , j=‖xi−x j‖∞
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Hierarchical clustering example
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Hierarchical clustering pathologies

● Does not depend on initialization, but still there are several 
parameters to choose from (linkage and distance function)

● Instead of K parameter, one must choose a distance threshold to stop 
joining clusters

● Advantage: copes well with non-spherical clusters
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Concentric rings hierarchical clustering

?
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Concentric rings hierarchical clustering

In this case, average link performs poorly, because some points on the other
ring, are actually close than ones on the opposite side of the same ring
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Concentric rings hierarchical clustering

Single link, however, only looks at the minimum distance, and there is
always a closer point on the same ring than the distance to the other ring
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Least-squares linear regression

● Fits a line that minimizes 
distances to all the points

● Used to test for linear 
relationships between variables

● Usually, R2 is used as a measure 
for goodness of fit

● Quite simple to implementobserved features

predicted variable
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Ordinary Least Squares (in 2D)

observed features (x)

predicted variable (y)

solution

Y≃a⋅X+b

(a ,b)=argmin
a ,b

∑
i

( yi−a⋅xi+b)
2

a =
E(XY )−E (X )E(Y )

E (X 2)−E (X )2

b = a E(X )−E(Y )

a x + b
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Ordinary Least Squares

β̂ = (XT X )−1 XT Y

observed features

X Y
predicted variable

y pred = X new β̂

fitting

Xnew

1
1
1
1
1
1
1
1
1

1
predicting

model:

solution

y=X β+ϵ

β̂=argmin
β

‖y−X β‖
2
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Quantifying the goodness of fit

Coefficient of determination (R):

Pearson's correlation coefficient (r):

For ordinary linear regression in 2D:

r2
=

cov (X ,Y )
σXσY

R2 =
Var (Y−X β̂)

Var (Y )

r2 = R2
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Total Least Squares

● Ordinary least-squares minimizes 
only the y-axis residuals

● This fits well in situations where X 
are observed with high precision, 
and only the Y values have errors (ε)
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Total Least Squares

● Ordinary least-squares minimizes 
only the y-axis residuals

● This fits well in situations where X 
are observed with high precision, 
and only the Y values have errors (ε)

● However, when both X and Y are 
error prone, this doesn't always 
work well

This line minimizes the y-axis residuals
and ignores the x-axis ones
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Total Least Squares

● Solution: using the total least 
squares algorithm (AKA orthogonal 
least-squares)
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Total Least Squares

y=X β+ϵ

β̂=argmin
β

‖ϵ‖=argmin
β

‖y−X β‖

OLS

β̂=argmin
β

‖ϵ‖=argmin
β

‖Z ( I−ββT )‖

this is the same as PCA, i.e. taking the β the component
with the largest eigenvalue

TLS:
● combine X and Y into one variable Z 

and center it (i.e. E[Z] = 0)
● find a 1D orthogonal projection (P) 

minimizing the sum of residuals

P = ββ
T ϵ = Z−Z P
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Things to remember before regressing

● If the x-value have significant errors, use TLS
● Use a “natural” scale (e.g. log-scale is often required)
● Always report N along with the R2

● If the distribution of points is very skewed (e.g. two distant clusters) 
R2 might be misleading



  51

General least-squares curve-fitting

● In general, curve fitting is performed by iterative minimization of the 
residuals

● Functions with more parameters will fit better, but will take longer to 
optimize and might result in over-fitting

●



CONCLUDING REMARKS



Metabolic modeling

● CellDesigner
● COPASI
● SBML
● COBRA toolbox

http://www.celldesigner.org/
http://copasi.org/
http://sbml.org/Main_Page
https://opencobra.github.io/


General computational tools

● Matlab™ 
– Bioinformatics toolbox

● Python
– sk-learn: machine learning (clustering)
– scipy: mathematical toolbox (regression, PCA, etc.)

http://www.mathworks.com/help/bioinfo/index.html
http://scikit-learn.org/stable/
http://www.scipy.org/
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