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Abstract

Metabolic systems are governed by a compromise between metabolic benefit and enzyme cost.
This hypothesis and its consequences can be studied by kinetic models in which enzyme profiles are
chosen by optimality principles. In enzyme-optimal states, active enzymes must provide benefits: a
higher enzyme level must provide a metabolic benefit to justify the additional enzyme cost. This
entails general relations between metabolic fluxes, reaction elasticities, and enzyme costs, the laws
of metabolic economics. The laws can be formulated using economic potentials and loads, state
variables that quantify how metabolites, reactions, and enzymes affect the metabolic performance in a
steady state. Economic balance equations link them to fluxes, reaction elasticities, and enzyme levels
locally in the network. Economically feasible fluxes must be free of futile cycles and must lead from
lower to higher economic potentials, just like thermodynamics makes them lead from higher to lower
chemical potentials. Metabolic economics provides algebraic conditions for economical fluxes, which
are independent of the underlying kinetic models. It justifies and extends the principle of minimal
fluxes and shows how to construct kinetic models in enzyme-optimal states, where all enzymes have a
positive influence on the metabolic performance.

Keywords: Metabolic Control Analysis, Cost-benefit analysis, Futile cycle, Enzyme cost, Economic poten-
tial, Economic balance equation.

1 Introduction

Metabolic processes in cells are controlled and shaped by enzyme levels. Since protein production and
maintenance are costly, enzyme profiles reflect a compromise between metabolic benefit and protein cost.
This hypothesis raises various questions about metabolic strategies. How should enzyme investments
be distributed between pathways, along pathways, and between reactions around a metabolite? If two
ATP-producing pathways differ in their yields and enzyme investments, which of them will be preferable,
considering that enzyme production itself consumes ATP? Should inefficient enzymes be expressed weakly
(because they provide little benefit) or strongly (to compensate for their low efficiency)? How should
metabolic fluxes be adjusted when enzyme costs are changing, e.g., at higher growth rates? To answer
this, we need to look at metabolism from an economic pespective.

Optimal enzyme profiles can be predicted from kinetic models in which enzyme levels are chosen to maximise
a metabolic benefit at a fixed total enzyme level [1] or at minimal enzyme costs [2, 3, 4]. Given a
model, optimal static or dynamic enzyme profiles can be computed numerically [5, 6], but such results
are anecdotical and do not provide general laws. To study optimal enzyme usage in general, one needs
to know how enzyme levels (as control variables) act on the stationary fluxes and metabolite levels. For
steady states under small perturbations, this relation is described by metabolic control coefficients [7, 8].
These coefficients, in turn, are related to optimal enzyme profiles. Klipp and Heinrich [1] studied a specific
cost-benefit problem – flux maximisation at a fixed total enzyme level and unconstrained metabolite levels
– and showed that the scaled control coefficients and enzyme levels in the optimised state are proportional,
i.e., enzymes with a large relative influence on the flux are abundant.
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Figure 1: A cell’s metabolic network resembles a chemical plant or a planned economy. Substance con-
version by reactions or pathways must be catalysed by enzymes (yellow arrows). This entails costs, which
need to be balanced by benefits. Metabolic economics assumes that enzyme levels are optimised for a
maximal metabolic performance at minimal enzyme investments. The metabolic objective can depend on
production rates, fluxes, and metabolite concentrations. As a general principle (bottom right), enzyme
usage must be justified by a benefit, either a conversion from lower-valued to higher-valued metabolites or
a direct contribution to the metabolic objective. Economic “values”, called economic potentials, can be
defined based on metabolic control theory. The same principles apply also to individual pathways (detailed
model of upper glycolysis on the left, where a futile cycle is suppressed by repression of FBP). If the
optimality problem is locally formulated for this pathway, metabolites on the pathway boundary are treated
as external and their economic potentials define a local objective function.

Here, I address more general optimality problems for enzyme levels and introduce new concepts for their
description. The problems could be solved numerically, yielding solutions for each particular case. However,
I am interested in general principles, as exemplified by thermodynamics: thermodynamic notions like
chemical potentials can greatly help understand the behaviour of kinetic models in general terms which
hold for a vast range of systems. Similarly, I attempt to find general notions and laws for the economics
of metabolic systems. Cell metabolism can be pictured as a chemical plant or as a planned economy (see
Figure 1) with a predefined biological objective. The objective induces a demand for substances and fluxes,
and optimally chosen enzyme levels will meet these demands.

The theory, called metabolic economics, can be formulated in terms of state variables called economic
potentials and loads. Economic notions are formally derived from metabolic control analyis and allow one to
characterise enzyme-optimal states in general and to realise such states systematically by particular kinetic
models. The economic variables describe local demands for metabolite concentrations and production
induced by the system’s global objective function (see Figure 1) and help clarify the logic behind enzyme
usage. With their help, the optimality conditions for enzymes can be written as local balance equations
between neighbouring compounds and reactions. The equations make it possible to construct kinetic
models in enzyme-optimal states with predefined fluxes. Such models are needed for cost-benefit studies,
for instance, on enzyme adaptions to environmental changes [3] or on the benefit and cost of allosteric
regulation [9].

The benefit principle – the fact that active enzymes must contribute to the metabolic benefit – is closely
related to the principle of minimal fluxes [10], a variant of flux balance analysis. As a link between both
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Figure 2: How metabolic network elements obtain their economic values. (a) Notions for enzyme-optimal
states in kinetic models. An enzyme (level u) catalyses a reaction, affects the fluxes v and concentrations
c, and contributes to the metabolic return g(u) = z(v(u), c(u)). The effort for maintaining the enzyme is
described by an investment function h(u), and the fitness function is the difference f(u) = g(u) − h(u).
A change in the enzyme level would affect the fitness in both ways. (b) Turning this around, we can
characterise each enzyme by a demands, stating how its possible changes would affect the return. Using
the chain rule, the total derivative can be split into local derivatives (here symbolically written as ratios
of differentials δg

δu
= [ δg

δv
δv
δr

+ δg
δc

δc
δr
] δr
δu
). Similar chains of derivatives exist for external metabolites (not

shown). In enzyme-balanced states, the demand δg/δu for an enzyme is balanced with its price δh
δu
.

Metabolic economics extends this idea from model parameters (enzyme levels and external metabolites) to
all metabolites and reactions in the network.

theories, I introduce the notion of economically feasible fluxes, metabolic flux distributions that have the
right sign pattern to appear in enzyme-optimal states. In particular, economic fluxes must lead from lower
to higher economic potentials. This constraint excludes economically futile modes in a similar way as
thermodynamic constraints exclude non-productive cycles.

In this article, I introduce metabolic economics in its basic version and discuss possible extensions. Defini-
tions and theorems are given in the appendix, proofs and other details in the Supplementary Information
(SI) at www.metabolic-economics.de/metabolic-economics/. MATLAB code is freely available on github
[11].

2 Kinetic models with optimal enzyme levels

In metabolic economics, we study kinetic metabolic models in which enzyme levels are control variables
and chosen to maximise a fitness function (Figure 2 (a)). The fitness is given by the difference between a
metabolic return g, the metabolic objective in steady state, and an enzyme investment h [2, 3, 4]. The same
optimality condition can be mathematically derived from other optimality approaches (e.g., maximizing the
growth rate at constrained compound concentrations). To describe states of optimal fitness, we need to
understand how changes in single network elements would affect the fitness directly or indirectly. We can
ask which elements cause a direct fitness change, what causes a change in those elements, and so on. This
can be traced back by taking derivatives (schematically shown in Figure 2 (b)). Since we are concerned
with steady state changes, this requires notions from Metabolic Control Analysis.

We first need some terminology for kinetic models (for details, see SI; mathematical symbols are listed in
Tables 1 and 2). The metabolites in a kinetic model can be external (with fixed concentrations xj) or
internal (variable concentrations ci) and reaction rates are given by rate laws rl(u, c,x) = ul r

′
l(c,x). The

metabolic objective is given by a function z(v, c) of the fluxes vl and internal concentrations ci (which
does not cover the cost of enzyme production). In whole-cell models, the objective function may rise with
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the biomass production rate and decrease with the total metabolite level. In pathway models, it could score
the consumption and production of substrates, products, and cofactors. The derivatives of the objective
function with respect to fluxes and metabolite levels are called flux gains zvl = ∂z/∂vl and concentration
gains zci = ∂z/∂ci. The gains are marginal quantities, describing how small variations of the state variables
vl and ci affect the metabolic objective. If the objective depends on fluxes only (flux objective z(v)), the
concentration gains vanish. The flux gain vector zv can be split in two parts

zv = Nx⊤zx + ẑv (1)

where Nx is the stoichiometric matrix for external metabolites, the production gain vector zx scores the
production or consumption of external metabolites, and the remaining gains ẑvl are directly attributed to
reactions (e.g., scoring heat production). How zv is split precisely is a matter of choice1. A metabolic
objective without direct flux gains is called production objective. Flux distributions v (i.e., stationary flux
distributions) can be characterised by their flux benefit b = zv ·v. Those with a positive benefit are called
beneficial, those with a negative benefit are called costly, and those with a vanishing benefit, satisfying

Nz v =
(
zv⊤

N

)
v = 0, are called non-beneficial. Non-beneficial and costly modes are also called futile. A

flux distribution is complete if all reactions are active, i.e. carry non-zero fluxes.

The fitness function is defined by the difference between metabolic objective and enzyme investment2:

f(u,x) = z(J(u,x),S(u,x)) − h(u) = g(u,x)− h(u). (2)

The metabolic objective g(u) = z(J(u,x),S(u,x)) in steady state, as a function of the enzyme levels ul,
is called metabolic return function. Its derivatives are called enzyme demand gul = ∂g/∂ul, or using the
logarithmic derivative bul = ∂g/∂ lnul, enzyme benefit. A beneficial flux distribution may still be wasteful
for cells if it requires too much enzyme. To capture this in our models, the investment function h(u)
is subtracted from the metabolic return [3] (for details, see appendix). Its derivatives are called enzyme
price hu

l = ∂h/∂ul and enzyme cost yl = ∂h/∂ lnul. In particular, enzymes that do not contribute to the
metabolic return should be inactive to save enzyme costs.

Metabolic economics is based on an optimality principle: the enzyme levels, as control variables, are chosen
such that the fitness function reaches a local optimum. The enzyme-optimal state contain inactive enzymes
and may thus be a boundary optimum3. Extensions of the optimality principle – including models with
unspecific enzymes and non-enzymatic reactions, more constraints, and multi-objective optimisation – are
discussed below. Our main aim will be to translate the optimality conditions for enzymes into economic
laws for metabolic fluxes, which should remain valid even if the kinetic model, with its rate laws and
investment function, is not precisely known.

The optimality condition for enzymes differs between active reactions (vl 6= 0 and ul > 0) and inactive
reactions (vl = 0 and ul = 0). Inactive reactions with positive enzyme levels (vl = 0 and ul > 0) would be
wasteful and can be ignored. For active reactions, the optimality condition reads ∂f/∂ul = 0 and implies a

1On the one hand, we can set zx = 0, and all flux gains zvl will be given as direct flux gains ẑvl . On the other hand, we
could set all direct flux gains ẑv

l
to zero and replace them by production gains zxj of virtual external metabolites (which are

introduced only for this purpose).
2For fast growing microbes, we might consider the growth rate as an objective function to be maximized. Such a growth

objective, under constraints on substrate levels to be treated with Lagrange multipliers, leads to fitness functions like Eq. (2).
3In practice, finding realistic states by numerical enzyme optimisation can be difficult because of local maxima in the fitness.

There may be a “locked state” at u = 0, where enzyme levels, internal metabolite levels, and fluxes vanish. The locked state
is a local optimum with an “activation barrier” for enzyme levels: only if enough enzymes are brought to sufficiently high
levels, the system gets into the economic basin of attraction of a profitable enzyme-balanced state, and a further enzyme
activation becomes beneficial. An alternative method for constructing enzyme-balanced states, which avoids this problem, is
described below.
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Figure 3: (a) Cost-benefit balance. In an enzyme-optimal state, the slopes of investment h and return g
as functions of lnu must be equal, i.e. enzyme benefit and cost must be balanced. Since enzyme costs are
positive, the enzyme must have a positive benefit, i.e. a positive control over the metabolic return. (b)
Fitness, metabolic return, investment, and their derivatives.

balance gul = hu
l between enzyme demand and price (see Figures 3 and 10). Using logarithmic derivatives,

we obtain the cost-benefit balance

vl 6= 0 ⇒
∂g

∂ lnul

=
∂h

∂ lnul

(3)

between enzyme benefit bl =
∂g

∂ lnul
= gul ul and enzyme cost yl =

∂h
∂ lnul

= hu
l ul. It must hold for all

active enzymatic reactions to allow for an enzyme-optimal state4. If a flux distribution v can be realised
by kinetic models satisfying Eq. (3), it is called enzyme-balanced or, if all reactions are active, completely
enzyme-balanced. Eq. (3) has a simple and important consequence: since active enzymes have positive
costs, they must also have positive benefits. This is called the benefit principle. For inactive reactions, the
enzyme level vanishes and the optimality condition reads ∂f/∂ul < 0: the enzyme price hu

l exceeds the
enzyme demand gul , and expressing the enzyme would decrease the fitness (see Figure 10).

3 Gain conditions and economical fluxes

Does the cost-benefit balance Eq. (3) say anything general about flux distributions, anything that does
not depend on specific rate laws or investment functions? At first sight, this seems unlikely because
the sensitivities gul depend on the rate laws. However, we can directly link them to fluxes by metabolic
control analysis (MCA) [7, 12]. In the language of MCA (see appendix), the enzyme demands gul are
response coefficients between the return g and the enzyme levels ul. The corresponding control coefficients
gvl = gul /Ē

vl
ul

= gul
ul

vl
are called flux demands. With their help, we can rewrite the enzyme demand as

gul = gvl
ul

vl
and the enzyme benefit as gul ul = gvl vl. The cost-benefit balance Eq. (3) now reads

gvl vl = hu
l ul (4)

4The balance equation in its two versions is analogous to the relations found in [1], where a flux was maximised under a
fixed sum of enzyme levels, corresponding to a uniform investment function for all enzymes (equal prices hu

l = ∂h/∂ul). The
finding that all flux response coefficients are equal is an example of the price-demand balance gul = hu

l , and the proportionality
between scaled flux control coefficients and enzyme levels is an example of the cost-benefit balance gul ul = hu

l ul.
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with flux benefits bl = gvl vl and enzyme costs yl = hu
l ul, and the benefit principle can be written as

gvl vl > 0. Dividing Eq. (4) by the flux, we obtain the balance

gvl = hu
l

ul

vl
(5)

between flux demand and the flux price hv
l = hu

l
ul

vl
(i.e., the enzyme cost per flux). The flux demands gvl

in Eqs (4) and (5) still depend on the model kinetics. However, since they are control coefficients, we can
apply the summation and connectivity theorems of metabolic control theory [13] and rewrite Eq. (5) in the
general form

K⊤ Dg(y)v−1 = K⊤zv (6)

(Ē L)⊤ Dg(y)v−1 = −L⊤zc (7)

called flux gain condition and concentration gain condition (Theorem 1 in Appendix). The symbols are
explained in the appendix. The vector y contains the enzyme costs hu

l ul, the vector v−1 contains the
inverse fluxes, and Dg(y)v−1 is the vector of flux prices hv

l = yl/vl. The equations hold for complete,
fully enzymatic flux distributions. Inactive reactions must be omitted from the model, and in models with
non-enzymatic reactions, the gain conditions must be modified (see SI P1.4). The gain conditions are our
first main result: they relate the inverse fluxes to enzyme costs, flux gains zvl , and concentration gains zci .
Even if y and Ē are unknown, the fact that y must be positive constrains the fluxes considerably. Together,
both gain conditions completely determine the enzyme costs. For instance, for a simple metabolic pathway
with flux objective z(v), condition (6) relates the total enzyme cost to the total flux benefit5 and condition
(7) determines the ratios of enzyme costs along the chain6.

If a metabolic state is enzyme-balanced with known enzyme costs, Eq. (6) and the stationarity condition
determine the fluxes (see [14]). But even if the costs are unknown, their mere existence constrains the
fluxes: flux distributions that can satisfy Eq. (6) with positive enzyme costs yl are called economically
feasible, or briefly economical (again, inactive reactions are assumed to be omitted, while flux distributions
that vanish completely are defined to be uneconomical.). The notion of economical fluxes links fluxes
and enzyme demands in a subtle way: economical flux distributions are not just beneficial (zv · v = 0),
but locally beneficial, i.e. each enzyme contributes to the benefit. Importantly, a flux distribution must
be economical to be enzyme-balanced. Uneconomical flux distributions would entail a waste of enzyme
resources, no matter which kinetic model we assume.

How can we check if a given flux distribution is economical? As a general criterion, it must be free of futile
modes, which are mathematically defined by test modes: given a flux distribution v, a non-vanishing flux
distribution k on the active enzyme-catalysed subnetwork is called a test mode of v. With the flux gain
vector zv, test modes can be classified as beneficial, non-beneficial, or costly. The active reactions shared
by v and k form the shared active region, and if flux distributions v and k share all flux directions on their
shared active region, they are sign-concordant. Now we can define futile modes in v: if a test mode k is
futile and sign-concordant with v, the reactions on the shared active region, with their flux directions, are
called a futile mode in v for zv. If v is economical and k one of its test modes, the following holds (test
mode theorem, 2, see Figure 4): if k is beneficial, it contains active reactions with the same flux direction
as v; if k is costly, it contains at least one flux with the opposite direction as v; and if k is non-beneficial,
both sorts of fluxes exist. The test mode theorem follows from Eq. (6) and from the fact that vl and
v−1
l have equal signs. Like the gain conditions (6) and (7), it only applies if v is complete. Otherwise,

5The kernel matrix K in Eq. (6) can be replaced by stationary flux distributions k. If we replace it by v itself, we obtain the
equality zv ·v =

∑
l yl =

∑
l h

u
l ul, so total flux benefit and enzyme cost must be equal. If we assume objective functions of

the form z(v) = (
∑

l z
∗

l vl)
β and investment function h(u) = (

∑
l h

∗

l ul)
γ , then Euler’s theorem for homogeneous functions

allows us to rewrite the optimality condition without derivatives: β z(v) = γ h(u).
6In models without moiety conservation, the link matrix L in Eq. (7) is an identity matrix I. With equal fluxes through

all reactions and with zc = 0, we obtain a condition Ē
vl
ci yl + Ē

vl+1
ci yl+1 = 0 for each metabolite i. The enzyme costs for

producing a metabolite and for its consumption are inversely proportional to the elasticities Ē
vl
ci = ∂vl/∂ci.
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Figure 4: Economical flux distributions and test mode theorem. (a) Schematic pathway with the production
of B as the metabolic objective. A flux distribution is economical if the flux gain condition can be satisfied.
To show that this is not the case here, we consider a test mode k (shown in (b)), which is futile and
sign-concordant with v. According to the test mode theorem, the existence of k shows that v cannot be
economical. We can see this from the flux gain condition (6): since zv scores only the production flux of
B, we obtain the right-hand side k · zv = 0, contradicting k⊤ Dg(y)v−1 6= 0 on the left. (c) Criterion
for economical flux distributions. To prove that the fluxes are economical, we assign economic potentials
(shades of blue) to all internal metabolites, increasing along the fluxes. The external economic potentials
(of A, B, C, and D) are predefined by the metabolic objective. With the flux cycle in (a), and assuming
that the economic potentials of C and D vanish, this would not be possible.

the inactive reactions must be omitted, and flux weights zvl and test modes k are defined on the active
network.

The test mode theorem implies that economical flux distributions are free of futile modes. But also the
opposite holds: according to the economical flux theorem (Theorem 3), flux distributions that are free of
futile modes (which entails being beneficial) are economical. Thus, being economical depends only on the
flux sign pattern and can be checked by a search for elementary futile modes7. Figure 4 shows an example:
the pathway flux in (b), used as a test mode, are non-beneficial and sign-concordant with the one (a).
Therefore, the pathway flux in (a) is uneconomical and cannot be realised by enzyme-optimal models. The
fluxes in (c), in contrast, are economical.

4 Economic potentials and loads

The gain conditions (6) and (7) refer to inverse fluxes, which is unintuitive and difficult to handle in flux
analysis. For a practical formalism, I now introduce economic state variables – called economic potentials
and loads – which reflect the economic values of single metabolites (see Figure 5). The economic potentials
refer to metabolite production, describing how virtual metabolite supplies would increase the metabolic
return. The economic loads, in contrast, refer to metabolite levels, describing how virtual concentration
changes would change the metabolic return. Both variables refer to a given metabolic state and describe
indirect effects, that is, economic effects mediated by other reactions.

Let us see this in more detail. The economic potentials describe how an extra steady supply of metabolites
would affect the metabolic return. For external metabolites, the economic potential wx

j is given by the
production gain zxj . For an internal metabolite i, we imagine a virtual supply flux ϕi, which changes the
steady state. The metabolic return becomes a function g(u,x, ϕ) of enzyme levels ul, external levels xj ,

and supply fluxes8 ϕi, and the economic potential of metabolite i is defined9 by wc
i = ∂g

∂ϕi
. If a model

7One only needs to check for non-elementary modes because any flux distribution with a futile mode will also contain an
elementary futile mode.

8The supply fluxes have no direct biological meaning. However, if we imagine that the cell realises the virtual fluxes by
transporter proteins, the economic potential of a metabolite corresponds to the price of the transporter at the break-even
point (where benefit and cost of the transporter cancel out).

9In the definition of economic potentials, the enzyme levels remain fixed. We could also assume that cells adapt their
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changes. (f) Economic loads of internal metabolites are defined by effects of virtual concentration changes.

contains conserved moieties (e.g., if the reaction stoichiometries guarantee that the sum [ATP]+[ADP]
is constant in time), some internal metabolite levels will depend linearly on others [15] and supply fluxes
could destroy the steady state. Therefore, we only allow supply flux vectors ϕ = Lϕ

ind (where the supply
fluxes of independent metabolites in ϕ

ind can be freely chosen). By definition, the economic potentials
of dependent metabolites vanish. However, we can also assign economic potentials to conserved moieties,
which will shift the economic potentials of metabolites. This is a gauge transformation, which changes
their numerical values, but without any impact on other quantities (see SI S2.3).

The economic loads describe the economic effects of metabolite levels or other quantities, like growth
rate, compartment sizes, or the temperature. A metabolite’s concentration demand describes how a virtual
concentration change of metabolite i would affect the metabolic return. It consists of a direct demand –
the metabolite gain – and an indirect demand, arising from its influence on the steady state. The indirect
demand is called economic load. External parameters and metabolite levels x have no direct fitness effects,
so their demands are given by their loads pxj = ∂g

∂xj
. For an internal metabolite, the load describes how

virtual concentration variations would affect the return via changes of the adjacent reaction rates. In
systems without moiety conservation, virtual variations would evoke a metabolic response that eliminates
the original variation. Thus, the demand of an internal metabolite vanishes and the load pci = −zci is given
by the negative concentration gain. In systems with moiety conservation, the virtual variation will change
the conserved moieties and cannot be eliminated, so the load contains additional terms. However, the
equation Lpc = −Lzc remains valid. Loads for other state variables are defined accordingly.

If a kinetic model is in an enzyme-optimal state, the economic variables satisfy general laws in the form
of local balance equations. With these laws, we can characterise the economics of metabolic states simply
and generally (see Figure 6 and the thought experiments in SI S1). The economic potentials play a key
role because of the reaction rule: the total flux demand gvl of a reaction consists of two terms10,

enzyme levels to the supply fluxes in order to increase the fitness. However, this is a second-order effect and therefore
irrelevant for the (first-order) economic potentials, so enzyme adaption can be ignored in the definition (see SI P3.2).

10The reaction rule can be derived from a thought experiment (see Figure S1). Imagine a cell that can vary its enzyme
levels and supply fluxes ϕi and performs a compensated enzyme variation. First, it decreases an enzyme level by a variation δu
where the differential δa of a state variable a is defined as the vector of its derivatives with respect to all model parameters, for
instance ul and xj). This variation would evoke an immediate rate variation δvl = Ēul

δul, which perturbs the mass balances
of substrates and products. The cell restores the original state by adding supply fluxes δϕi = −nil δvl . The metabolites
remain mass-balanced, and the steady-state concentrations and fluxes remain unchanged except for the flux of the perturbed
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demand”). In models without moiety conservation, the total concentration demand vanishes, so economic
load and concentration gain have equal values and opposite signs. Similar laws hold for other quantities
affecting the reaction rates like the temperature. (c) Enzyme law. The enzyme stress is the difference
between enzyme demand gu = gv v

u
and enzyme price hu. In optimal states, enzyme stresses vanish and

enzyme demands and prices are equal.

gvl = ẑvl +∆wl, (8)

the flux gain ẑvl (“direct flux demand”) and the balance ∆wl =
∑

i nil wi of economic potentials along
the reaction (“indirect flux demand”) (see SI P3.1). This is important: even though the total flux demand
is a systemic property, it can be expressed in terms of local variables (see SI P5.1).

The compound rule (proof SI P4.2)

pci =
∑

l

gvl Ē
vl

ci =
∑

l

[ẑvl +∆wl] Ē
vl

ci (9)

links a metabolite’s load pci to the flux demands gvl of the adjacent reactions (i.e. reactions whose rates
are directly affected by it) and, via the reaction rule, to the economic potentials wi in its neighbourhood.
Reaction and compound rule do not require an optimal state, and the reactions need not be enzymatic.
Given the elasticities, a metabolite’s load can be computed from the demands for the fluxes affected by this
metabolite, i.e., from the flux gains and economic potentials in its neighbourhood. The economic loads
of external metabolites (or other model parameters that affect the reaction rates) satisfy rules similar to
Eq. (19). Using the compound rule, we can compute the internal economic potentials from given gains
and elasticities. In the general case (systems with moiety conservation and dilution), the internal economic

reaction. The resulting fitness difference can be computed in two ways: (i) by the effect zvl δvl exerted directly by the reaction,
or (ii) by the systemic effect gvl δv of the uncompensated enzyme variation plus the systemic effect

∑
i w

c
i δϕi = −∆wc

l δvl
of the compensating virtual fluxes. Equating both expressions and dividing by δv, we obtain the identity gvl = zvl + ∆wc

l .
Splitting the flux gain into zvl = ẑvl +∆wx

l , we can rewrite the flux demand as gvl = ẑvl +∆wx
l +∆wc

l , or as g
v
l = ẑvl +∆wl.

One time, the term ∆wx for external metabolites is included in zv , the other time in ∆w (for more details, see SI S1).
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Figure 7: Economic balances in growing cells (schematic example). (a) Biomass is produced from glucose
via precursor molecules; the reactions are catalysed by enzymes, which are produced by ribosomes. (b)
Economic potentials and flux demands must satisfy two types of relations: (i) Reaction law: in each
reaction, the flux demand (squares) equals the difference of economic potentials (circles). For instance,
in catabolism (blue): wv = wc

Energy + wc
Precursor − wc

Glucose = 1 + 1 − 0 = 2. (ii) Compound law: for
each compound, the flux demands in the adjacent reactions, weighted with the elasticities, must vanish
(e.g. ribosome (yellow): 1 · wv

RibSynth + 1 · wv
EnzSynth + 1 · wv

RibDeg = 1 + 2 − 3 = 0). The numbers are
based on a simple choice of reaction elasticities.

potentials are given by (proof in SI P4.3)

wc = −[LMdil−1
IR ]⊤ zc∗ (10)

with the effective gain zc∗ = Ē⊤ zv+zc, the Jacobian matrix11 Mdil = NR Ē L−κ I, and IR, the projector
from internal to independent metabolites.

As an example, consider the schematic model of a growing cell in Figure 7. In the model, biomass is
produced from external glucose via a pool of precursors. A catabolic reaction produces precursors and
energy (high-energy phosphate groups in ATP) and an anabolic reaction converts them into biomass.
Enzymes are not treated as control variables but as metabolites with a catalytic activity. Producing them
requires energy and precursors, and the same holds for ribosome production. All cell compounds are
diluted due to cell growth (with growth rate κ). The metabolic objective is represented by a concentration
gain for biomass, equivalent to a demand for fast growth at a constrained biomass concentration. The
economic potential for external glucose (wglucose = 0) and the biomass gain (zcbiomass = 4) are fixed and
given. From the reaction and compound rules, and with a simple choice of elasticities, we obtain internal
economic potentials wc = (1, 1, 4, 3)⊤ and flux demands gv = (2, 2, 2, 1)⊤ (for details, see SI P6.3).

5 Economic balance equations

Reaction and compound rules show how economic potentials and loads are related to flux demands and
reaction elasticities. To link them to enzyme costs, we need to include the optimality assumption. By
inserting the cost-benefit balance Eq. (3) into the reaction rule Eq. (8), we obtain the reaction balance

[ẑvl +∆wl] vl = hu
l ul, (11)

11The inverse Jacobian also appears in the formula for control coefficients [15].
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Figure 8: Local balances between enzyme costs, economic potentials, and economic loads. (a) A balance
between flux benefit and enzyme cost (”reaction balance”) follows from the optimality condition fu

l =
gul − hu

l = 0 (compare Figure (6)) with economic potential difference ∆wl; flux vl; direct flux gain ẑvl ;
enzyme cost yl = hu

l ul. Without direct flux gains, a forward flux requires that economic potentials increase
between substrate and product. (b) Compound balance (economic load pci = −zci ; reaction flux vl; flux
cost weight hv

l = yl/vl; scaled elasticity Evl
ci ). The enzyme costs in both reactions are balanced with the

metabolite’s economic benefit pci ci, determined by the concentration gain zci .

which must hold for all active enzymatic reactions. It states that the flux benefit bl = [ẑvl +∆wl] vl (that
is, the local rate of benefit production) and the enzyme cost yl = hu

l ul must be equal. Since enzyme costs
are positive, flux demand ∆wl + ẑvl and flux vl must have the same signs. In reactions without direct flux
gains (ẑvl = 0), fluxes must lead from lower to higher economic potentials. In contrast, fluxes with direct
gains (ẑvl 6= 0) may run towards lower economic potentials, but this case can be excluded by reformulating
the model with virtual external metabolites. Like the flux gain condition (6), the reaction balance can be
useful even if the kinetic model is not known in all details. Given a complete flux distribution v, it is always
possible to find internal economic potentials wc

i and positive enzyme costs yl that satisfy the reaction
balance? It is, whenever the flux distribution is economical (Theorems 2 and 3). For uneconomical flux
distributions – i.e., flux distributions with futile cycles – no feasible set of potentials wc exists. A similar
existence theorem holds for chemical potentials in thermodynamic flux analysis [16]. To obtain an analogous
balance equation for flux gains and prices, we omit all inactive reactions, divide Eq. (11) by the flux vl,
and obtain

ẑvl +∆wc
l = hv

l =
hu
l ul

vl
. (12)

The flux price on the right can also be written as hv
l = yl

vl
or hv

l =
hu
l

r′
l

. If the flux vl is positive (which can

be assumed without loss of generality), we obtain the inequality

hu
l ul

vl
≥

hu
l
,min

kcat
= hv,min

l (13)

where hu
l
,min is some lower bound on the enzyme price12 and kcat is the forward catalytic constant. Using

estimates for these quantities, we obtain tight constraints on the flux demands.

Our second balance equation, the compound balance, relates a metabolite level to the enzyme costs in the
surrounding reactions (i.e. reactions in which the metabolite appears as a reactant, catalyst, or allosteric
regulator). To derive it, we assume that the state is enzyme-balanced and that all reactions are enzymatic13

and insert the reaction balance yl = [ẑvl +∆wl] vl into the compound rule (19). For external metabolites

12With Eq. (17), enzyme prices can be estimated from relative sizes and effective degradation rates of enzymes.
13For a general compound balance, including non-enzymatic reactions, see Eq. (20)
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(levels xj and loads pxj ) or internal metabolites (levels ci and loads pci ), it reads, respectively (see SI P5.2),

pxj xj =
∑

l

hu
l ulE

vl

xj

pci ci =
∑

l

hu
l ulE

vl

cm . (14)

Similar balance equations hold for other state variables and parameters, including parameters like the
temperature that affect several reactions. Dividing by the concentration, we obtain compound balances in
the form

pxj =
∑

l

hv
l Ē

vl

xj
, pci =

∑

l

hv
l Ē

vl

ci . (15)

A compound balance shows which combinations of enzyme costs around a metabolite are economically
feasible. The enzyme costs are weighted by the reaction elasticities Evl

ci , which can be positive or negative,
and their weighted sum must be balanced with the metabolite’s concentration gain. If a metabolite has a
vanishing level (ci = 0) or load (pci = 0, e.g., an internal metabolite that does not appear in the metabolic
objective), the sum in Eq. (14) must vanish.

As an example, consider a linear pathway with flux objective (zc = 0) and a positive flux: for each
internal metabolite, the costs of neighbouring enzymes are inversely proportional to their scaled elasticities:
yl/yl+1 = |Evl

cl
/E

vl+1

cl |. The same relation follows from the concentration gain condition. On the contrary,
if a low internal metabolite level is penalised, the metabolite has a positive gain and thus a negative load
pci > 0. Then, the elasticity-weighted enzyme costs for producing reactions must exceed the costs for
consuming reactions. Since producing reactions tend to have smaller elasticities [17], the flux prices of the
producing reactions will be higher. If an external nutrient has a positive influence on the return, its load is
positive and cells should invest in its import. In contrast, if an external metabolite has a vanishing load or
concentration, the transporter would not be profitable.

6 Constructing kinetic models in enzyme-optimal states

Knowing that fluxes, economic potentials, and loads from enzyme-optimal kinetic models satisfy the balance
equations, we may wonder if the opposite holds as well – if such variables, once they satisfy the balance
equations, can always be realised by kinetic models, and if such models can be systematically constructed.
This is in fact possible. Given the gain vectors zv and zc, we can use balance equations to realise
economical flux distributions by enzyme-balanced kinetic models (for details, see SI S3). There is one
limitation: some concentration gain vectors zc may not comply with our choice of economic potentials: in
this case, the algorithm will adjust them to enforce a solution. By sampling the reaction elasticities within
feasible ranges and solving for the kinetic constants, we can construct kinetic models that realise our flux
distribution. Inactive reactions can be ignored (that is, justified by assuming large enzyme prices or low
catalytic constants). Aside from its practical use, the model construction shows that any economical flux
distribution can be realised by enzyme-balanced models, and is therefore enzyme-balanced.

Figure 9 shows a model of yeast central metabolism constructed in this way. Some flux directions were
predefined, ATP production was used as the metabolic objective, and feasible fluxes were determined by
flux minimisation. The flux directions were then used to define linear constraints on the chemical and
economic potentials. Chemical potentials were chosen within predefined bounds, and economic potentials
were computed by fitting the enzyme costs to mass-weighted proteome data14. Then, economic loads

14Different heuristic principles can be used in choosing the economic potentials. The principle of uniform costs states that
enzyme costs (or equivalently, enzyme benefits) should be similar between enzymes. As another heuristics, one may predefine
plausible enzyme costs (or benefits) and approximate them by the model. Predefined flux demands or prices can be treated
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Figure 9: Kinetic model in an enzyme-balanced state. (a) Reconstructed model of yeast central metabolism.
The model has economical, thermodynamically feasible fluxes which point towards higher economic po-
tentials (circle colours: pink: negative; white: zero; blue: positive; cofactors not shown). (b) Enzyme
demands in the reconstructed model. A set of enzyme demands (estimated from enzyme levels) was pre-
defined and approximated by the model by a unique set of economic potentials. Another possibility would
be the principle of uniform costs, assuming that all enyzme costs (and accordingly, all enzyme benefits)
should be as similar as possible.

and elasticities were chosen, corresponding rate constants were determined, and the full kinetic model was
constructed.

If we reconstruct a kinetic model in this way, will its enzyme levels really be optimal? The cost-benefit
balance Eq. (3) is a necessary, but not a sufficient condition for optimality. Additionally, the state must
be dynamically and economically stable: any enzyme variation must decrease the fitness. In a second-
order approximation, we can require that the fitness curvature matrix Fuu = ∂2f/(∂ul ∂uk) for active
enzymatic reactions be negative definite. Since each enzyme level must be economically stable, the fitness
curvatures ∂2f/∂u2

l of active enzymes must be negative. If an enzyme-balanced kinetic model has been
constructed as described above, will it be economically stable? For models with linear flux objectives and
sufficiently curved investment functions, this is the case. In metabolic pathways, the upregulation of a
single enzyme will typically reduce its flux control, so a flux objective, as a function of single enzyme levels,
will be negatively curved. Since enzyme prices increase more than linearly with protein levels [18], the
stability condition will be satisfied for each single enzyme. However, whether the entire enzyme profile is
economically stable (i.e. whether the curvature matrix as a whole is negative definite) is a more difficult

similarly [14]. Flux prices hv
l = yl/vl, estimated from known kcat values and enzyme sizes, can be used in flux analysis or

in the reconstruction of enzyme-balanced kinetic models. With Eqs (6) and (7), they can be adjusted to make them fit into
enzyme-optimal states.
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question15. In any case, strongly curved investment functions can guarantee economic stability16. Our
model construction algorithm produces states that are enzyme-balanced, but maybe not enzyme-optimal.
To obtain enzyme-optimal states, we need to sample enzyme-balanced models and select the ones with
dynamically and economically stable states (for details, see SI S3).

7 Discussion

How should cells allocate enzyme investments to metabolic pathways, and how should this choice depend
on the interplay of pathway fluxes and on the specific costs and efficiencies of enzymes? Economics,
which studies compromises between opposing needs, can help answer such questions. Metabolic economics
cannot be used to prove or disprove enzyme optimality – which would be epistemologically impossible.
However, as a theory, it addresses optimality assumptions that biologists tend to make, but often do not
spell out. Making these assumptions explicit and testing their consequences by models can help understand
how organisms function and under which selection pressures and constraints they evolve.

A main difficulty in kinetic models is how tightly all processes are linked. For instance, if biomass production
is the metabolic objective, enzymes will obtain their economic value by contributing to biomass production.
However, translating the value of biomass into values of individual enzymes is difficult, not only because
we need to trace all causal effects in the network, but also because enzyme levels are, as we assume,
optimised and therefore adapted to each other. Flux demands, economic potentials, and enzyme costs, the
key variables in metabolic economics, describe the values of fluxes, metabolite production, and enzymes
induced by the fitness function. Like metabolic control coefficients, and unlike simple molecule properties
like rate constants or molecular weights, they emerge from the enzyme’s role in cellular networks and from
the economic compromises between them. Importantly, they are marginal quantities (e.g., describing the
effect of such enzyme changes, not the absolute fluxes catalysed by enzymes in the present state). This
resembles the way in which enzyme costs and benefits are defined in experimental studies [4, 18].

Given a fitness function, the enzyme levels in kinetic models can be optimised numerically. Like in other
numerics-based methods such as FBA, this works only on a case-by-case basis. Metabolic economics, in
contrast, provides general laws based on notions like enzyme-balanced states, economical flux distributions,
or futile modes. It provides ways to compute economical flux distributions and shows that these, and no
others, can appear in enzyme-balanced states – that is, states in which all active enzymes have a positive
effect on the metabolic return. This can be an important criterion for constructing realistic models. Unlike
usual flux analysis, metabolic economics accounts for the complex relations between enzyme levels and
stationary fluxes, for allosteric regulation, and for concentration-dependent fitness functions. A number of
extensions of the theory are described in appendix E. Metabolic economics highlights the economic state
of a system, as described by economic potentials and loads, which complements the metabolic state given
by fluxes and concentrations. The economic variables form a new layer of description, linking the economic
notions between kinetic and stoichiometric models. On the one hand, they allow us to analyse enzyme-
balanced states without fully specifying the rate laws or the enzyme cost functions. On the other, once a
feasible economic state has been constructed from balance equations, it can be realised by enzyme-balanced
kinetic models, which can be constructed systematically.

Although fluxes and metabolite levels are closely coupled, their flux gains and concentration gains appear

15If a model contains only enzyme-catalysed reactions, a proportional scaling of enzyme levels, at constant external metabo-
lite levels, leads to a proportional scaling of fluxes. If the objective function is linear in the fluxes, the return function g(u,x)
will be linear with respect to the overall scaling, so the curvature matrix will have a vanishing eigenvalue (with the eigenvector
u). To obtain an economically stable state in this case, the investment function needs to be positively curved in the same
direction (given by u).

16If all enzymes have equal prices, the gradient and curvature matrix of the investment function have the forms hu = α(u)1
and Huu = β(u)11⊤ with convex increasing functions α and β. The enzyme demand vector ∂g/∂u in an enzyme-balanced
state must have the form gu = α1, implying that gv Dg(v) ∼ u. This resembles the proportionality CJ

l ∼ ul between scaled
flux control coefficients and enzyme levels shown in [1].
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in separate equations. On the one hand, there is an economics of metabolite production, described by flux
gains and economic potentials and subject to flux gain condition and reaction balance. On the other, there
is an economics of metabolite levels, described by concentration gains and economic loads and governed by
concentration gain condition and compound balance. Both sets of equations describe the same metabolic
state, but from different angles. If we start from a kinetic model, we can optimise the enzyme levels
and obtain the economic potentials by taking derivatives. Treating them as state variables helps us focus
on the different ways in which this network can be operated economically. Just like metabolic states
are described by fluxes and concentrations and thermodynamic states are described by driving forces and
chemical potentials, the economic state is described by economic potentials, loads, and enzyme costs.
Using the economic variables, we can explore the space of enzyme-balanced states, realised by different
kinetic models of the same network.

Metabolic economics relies on kinetic models, but some of its main results – the futile mode theorem
and the reaction balance – are directly applicable to flux analysis, where we want fluxes to be realisable
by enzyme-optimal kinetic models, but without specifying these models in detail. In an FBA problem
with flux objective zFBA(v) = zvFBA · v, we may interpret zvFBA as the flux gain vector zv = ∂z/∂v
of a kinetic model whose economic potentials we attempt to find. The internal economic potentials wc

i

must satisfy the benefit principle [zvl + ∆wc
l ] vl > 0, which can be included into FBA in the same way

as thermodynamic flux constraints [19]. Geometrically, the benefit principle restricts flux distributions to
feasible segments in flux space (orthants and their surfaces). Economic flux analysis – constraint-based flux
prediction under thermodynamic and economic constraints – rules out flux modes that are incompatible
with thermodynamics or enzyme optimality. The economic and thermodynamic constraints are strikingly
similar and can be derived from a common variational principle (general flux cost minimisation) and treated
with the same mathematical methods [14].

Metabolic economics is closely related to flux cost minimisation, which penalises fluxes by cost functions
like the weighted sum of fluxes [10, 20]. Both methods avoid excessive costs and exclude futile cycles, but
do so in different ways. In flux cost minimisation, fluxes are optimised for low costs at a fixed metabolic
benefit. Numerical optimisation yields a specific flux distribution, which depends on the cost function
chosen. In metabolic economics, costs are not assigned to fluxes, but to enzyme levels. Nevertheless,
the benefit principle leads to sign constraints for the fluxes, which can be used in flux analysis without
reference to a specific kinetic model. The metabolic objective can depend on metabolite levels, but the
concentration gains do not appear in the reaction balance (11) and are only reflected in the numerical
values of the economic potentials. Despite their different assumptions, metabolic economics and FCM
lead to essentially the same constraints on flux directions (flux cost minimisation theorem, Theorem 4).
Therefore, metabolic economics justifies flux cost minimisation as a method for computing economical
flux distributions. If a production objective is used, flux distributions obtained by FCM will satisfy the
thermodynamic and economic constraints.

To find biologically plausible economic potentials, heuristic principles like the principle of uniform costs
can be used, which are based on assumptions and additional data and do not require a full kinetic model.
Thus, given a flux distribution, we can estimate economic potentials and enzyme costs, possibly based on
proteome and protein size data, and realise the economic state by a kinetic model. Introducing optimality
considerations into kinetic model construction helps integrate various data – metabolite levels, fluxes, and
kinetic constants on the one hand, metabolic efficiency and protein costs on the other.

If the enzyme levels in a network are optimised, the enzyme levels will depend on each other, and modelling
this state pathway by pathway may seem difficult. Yet, metabolic economics is suited for this type of
modular modelling: it translates the global metabolic objective into a production of value, described by
local balance equations for each reaction and pathway, where pathway borders can be freely chosen. This
agrees with the principle of individual optimality: if the enzyme profile is optimised as a whole, each enzyme
level will be optimal given the rest of the system. In such modular models, pathways must still be able to
“negotiate” to balance the enzyme activities between them. The pathways are linked by communicating
metabolites at their boundaries, the “negotiation” happens through the economic potentials of these
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metabolites, and possibly through nonlinear enzyme investment functions. Thus, the economic potentials
can serve as connecting variables aside from fluxes, concentrations, or chemical potentials. If pathway
models are prepared with consistent concentrations and economic potentials on their boundaries, they can
directly be combined and the resulting model will show a consistent enzyme-balanced state by construction.
Since metabolic economics is a local theory, we can focus on a single pathway: the demands in this pathway,
induced by gains in the surrounding network, can effectively be represented by the economic potentials on
the pathway boundary.

A modular picture of cells (like in Figure 1) shows how demands are propagated between pathways. For
instance, the production cost of a substance can be broken down into a cost for substrates and a costs for
the enzyme, whose production entails costs for amino acids and energy, costs of ribosomes and mRNA, and
so on, and this is not just a verbal description, but equations between mathematically defined quantities.
Thinking in terms of modules can help understand regulation problems in metabolic networks. If regulation
functions are optimally chosen, they should map metabolic states (to be achieved) to optimal enzyme
levels (necessary to achieve them), and are therefore an “inverted model” of cell metabolism. If there is
a “modular regulation task” behind optimal enzyme levels (because the expression of pathway enzymes
depends on a few boundary metabolites), this may be reflected in modular systems for enzyme regulation.

Real cells do not seem to behave optimally in all cases. For wild-type cells, which are not yet adapted to
laboratory conditions and treatments like gene knockouts, this is not surprising . There are different ways
to reconcile metabolic economics with non-optimality: on the one hand, we may assume that cells behave
optimally, but with more complex objectives or constraints than considered in our models. Phenomena
like preemptive expression or inhomogeneous expression in populations, like in bacterial persistence, show
how cells can adapt to complex environments with changing nutrient supplies or rare severe challenges
by antibiotics. Enzyme profiles that look wasteful (if we just consider the current environment) may
be economical if we consider an adaption to uncertain future challenges – in the sense of bet-hatching
strategies – in the optimality problem. On the other hand, we may simply state that some enzyme profiles
are not optimal – for the presumable objective chosen – and may quantify their deviations from optimality
by economic stresses. By doing this for various objective functions, we may learn which of them come
closest to explaing the real behaviour of cells.

Metabolic economics extends the relation between control coefficients and enzyme levels, stated by Klipp
and Heinrich, far beyond its original scope. Flux- and concentration-dependent objectives and general
enzyme cost functions can be used and general conclusions about flux distributions are drawn. The benefit
principle – enzymes need to provide positive benefits to match their positive costs – could be applied to
systems beyond metabolism such as protein production and degradation, usage of structural proteins and
membranes, or cell signalling. Like in metabolism, the benefits of molecule species or various quantities in
cells can be defined by control coefficients, and balance equations follow from thought experiments with
compensated variations. Metabolic economics could even be extended to dynamic processes (controlled
by temporal enzyme profiles), to spatial distributions of metabolites, and to uncertainties and variability
of cellular variables (considering the value of information [21] embodied in the time profiles of signalling
molecules).
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A Mathematical symbols

Kinetics

ci mM Internal metabolite concentration
xj mM External metabolite concentration
ul mM Enzyme level
vl mM/s Reaction rate
rl(c,x) mM/s Rate law rl(c,x) = ul r

′

l(c,x)
r′l(c,x) = rl/ul 1/s Enzyme-specific rate
κ 1/s Cell growth rate
κl 1/s Rate constant for degradation of enzyme l

Flux modes

N
tot,N,Nx 1 Stoichiometric matrix (total ntot

il , internal nil, external n
x
jl)

K,Ktot 1 Right-kernel (stationary flux) matrices (satisfying NK = 0, Ntot
K

tot = 0)
G 1 Left-kernel (conserved moiety) matrix (satisfying GN = 0)
v mM/s Stationary flux distribution
k mM/s Test mode (stationary on active region)
PFBA Stationary flux polytope in FBA problem: Nv = 0 and v

min ≤ v ≤ v
max

PFBA,b Objective-flux polytope, additional condition b = z
v · v

Thermodynamics

µi kJ/mol Chemical potential
Θl 1 Thermodynamic driving force Θl = −∆Gl/RT = −

∑

i nil µi/RT
σl kJ/(s m3) Entropy production per volume σl = R (Θl · vl)

Metabolic control

L 1 Link matrix

E
vl
ci 1 Scaled metabolite elasticity (internal E

vl
ci = ci

vl

∂vl
∂ci

, external E
vl
xj =

xj

vl

∂vl
∂xj

)

Ēvl
ci 1/s Unscaled metabolite elasticity (internal Ēvl

ci = ∂vl
∂ci

, external Ēvl
xj = ∂vl

∂xj
)

Ēvl
ul

1/s Unscaled enzyme elasticity Ēvl
ul

= vl
ul

= r′l
Si(u,x) mM Steady-state internal metabolite concentration
Jl(u,x) mM/s Steady-state flux

RS
il, R

J
rl Unscaled response coefficient (internal conc. i and flux r) for enzyme l.

CS
il, C

J
rl 1, s Unscaled control coefficient (internal conc. i and flux r) for reaction l.

CS

ϕind
i

, CJ

ϕind
i

1, s Unscaled control coefficient w.r.t independent supply fluxes

Flux cost minimisation

b(v) = z
v · v D Flux benefit function

H̄(v) D Flux cost function, e.g. weighted flux sum H̄(v) =
∑

l H̄
v∗
l |vl|

H̄v
l = |∂H̄/∂vl| D s/mM Flux price

yv
l = H̄v

l |vl| D Flux cost

Table 1: Notions and symbols for kinetic models. Reaction rates and enzyme levels are given in units of
mM/s and mM. Other units (mol/s and mol) could be used instead. Indices denote metabolites in general
(i), external metabolites (j), and reactions (l).
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Metabolic objective

z(v, c) D Metabolic objective
zci = ∂z/∂ci D/mM Compound gain
zvl = ∂z/∂vl D s/mM Total flux gain

zxj D s/mM Production gain From decomposition z
v = N

x⊤
z
x + ẑ

v

ẑvl D s/mM Direct flux gain From decomposition z
v = N

x⊤
z
x + ẑ

v

zc∗i D/mM Effective concentration gain zc∗i = zci +
∑

l Ē
vl
ci z

v
l

N
z =

(

z
v⊤

N

)

Benefit-stoichiometric matrix Right-kernel matrix is called K
z

Enzyme economy

f(u,x) = g(u,x)− h(u) D Fitness function
g(u,x) = z(J(u,x),S(u,x)) D Metabolic return
h(u) D Enzyme investment

gul = ∂g/∂ul D/mM Enzyme demand = Load of enzyme level
gxj = ∂g/∂xj D/mM External metabolite demand = Load of external metabolite level
gqr = ∂g/∂pr Demand for quantity qr = Load of quantity qr
hu
l = ∂h/∂ul D Enzyme price Direct (= total) enzyme price

ϕind
i mM/s Virtual supply flux Perturbation parameter in g(u,x,Lϕ

ind)
γi mM/s Virtual concentration change Perturbation parameter in g(u,x,ϕind, γ)

gϕi = ∂g/∂ϕind
i D s/mM Demand for virtual supply flux (for independent metabolites i; otherwise 0)

gci = ∂g/∂γi D/mM Concentration demand Vanishes unless there are conserved moieties

Economic state variables

wi D/(mM/s) Economic potential Internal: wc
i = gϕi ; external: w

x
j = zxj

∆wl D s/mM Conversion demand ∆w = N
tot⊤

w

pci D/mM Metabolite load Internal: pci = gci − zci ; external p
x
j = gxj

pqr = gqr Load of quantity qr

gvl = gul ul/vl D s/mM Flux demand gvl = ẑvl +∆wl

ĝvl D s/mM Direct flux demand ĝvl = ẑvl

Benefit and cost

bul = ∂g/∂ ln ul D Enzyme benefit Scaled enzyme demand, = gul ul

bvl = gvl vl D Flux benefit bvl = [∆gvl + ĝvl ] vl
bci , b

x
i D Metabolite benefit Scaled values bci = pci ci, b

x
j = pxj xj

bqr D Benefit of quantity qr Scaled values bpi = ppr pr
yl = ∂h/∂ ln ul = hu

l ul D Enzyme cost
hv
l = yl/vl D s/mM Flux price Enzyme cost/flux = enzyme price/spec. act.

fu
l = ∂f/∂ul D/mM Enzyme stress gul − hu

l = [∆wl + ẑvl ]
vl
ul

− hu
l

y∆
l = ∂f/∂ ln ul D Economic imbalance fu

l ul = [∆wl + ẑvl ] vl − yl
fv
l = (∂f/∂ ln ul)/vl D s/mM Flux stress fu

l ul/vl = [∆wl + ẑvl ]− hv
l

Table 2: Mathematical symbols for economic state variables. Fitness, metabolic objective, and investment
are expressed in a hypothetical unit called Darwin (D). For instance, if the fitness of microbes is measured
in terms of logarithmic growth rates, one Darwin corresponds to an e-fold increase of the growth rate.
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Figure 10: Enzyme demand and price. (a) The slopes of return and investment function – called enzyme
demand and price – must be balanced (compare cost-benefit balance in Figure 3). (b) If the demand is
always lower than the price, the enzyme in the optimal state must be inactive. (c) If the demand is always
negative, the enzyme must be inactive as well.

B Definitions

Definition 1 (Kinetic model) We consider kinetic models with reversible rate laws Eq. (16) and thermo-
dynamically feasible rate constants [17]. Reaction rates are given by rate laws

vl = rl(u, c,x) = ul r
′
l(c,x). (16)

Each reaction is catalysed by a specific enzyme with level ul which appears as a prefactor17. The rate laws
– e.g. mass-action or Michaelis-Menten kinetics – must be reversible and thermodynamically feasible (see
SI S1.3 ) and the rate constants must satisfy Wegscheider conditions and Haldane relations [17]. Allosteric
regulation by metabolites is included in the rate laws while covalent enzyme modifications (e.g. phosphory-
lation that changes the enzyme activity) may be captured by the variables ul. Rate laws and stoichiometric
matrix N (referring to internal metabolites) define a kinetic model. We consider models with a stable
steady state. The steady-state concentrations ci = Si(u,x) and fluxes vl = Jl(u,x) = rl(S(u,x),x)
depend on the model parameters, i.e. enzyme levels ul and external concentrations xj .

The internal stoichiometric matrix N contains general structural information. The rows of its left-kernel
matrix G describe conserved moieties, and the columns of the right-kernel matrix K describe stationary
fluxes. In models with moiety conservation, N can be split into a product LNR, where the rows of NR

(reduced stoichiometric matrix) belong to independent metabolites and are linearly independent. L is
called link matrix. The splitting helps to describe moiety conservation, which make some metabolite levels
linearly dependent (e.g., via a constant sum of concentrations [ATP] + [ADP] + [AMP]).

The matrix Ē = ∂r/∂c contains the unscaled elasticities for internal metabolites, and Ēvl
ul

= vl/ul denotes

the unscaled enzyme elasticities. Scaled elasticities for internal metabolites are defined by Evl
ci = ∂ ln |vl|

∂ ln ci
=

ci
vl

∂vl
∂ci

. In the definition of elasticities, reactant and enzyme levels are controllable parameters, i.e. the
reactions are considered in isolation. The response and control coefficients, in contrast, are derivatives of
the global steady-state concentrations Si and fluxes Jl. For a list of variables, see Table 1.

Definition 2 Investment function The investment function h(u) represents costs in enzyme production
and maintenance, ribosome production, or molecular crowding – processes that do not explicitly appear in

17General symbols ul and xj are used instead of El and cext to emphasise their roles as controllable and non-controllable
model parameters. The vectors u and x can also comprise other quantities: for instance, the growth rate as a controllable
parameter ul, or the temperature as a non-controllable parameter xj .
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the metabolic model. Simple investment functions can be obtained as follows. An enzyme’s translation
rate (enzyme index l) is proportional to enzyme level ul, protein chain length Ll (number of amino acids),
and effective degradation rate (κl + κ), where κl is the rate constant for protein degradation and κ is the
cell growth rate. This yields the total translation rate

∑

l(κl + κ)Ll ul for all enzymes. A faster protein
production would require more ribosomes, which need to be produced: to account for this, the protein
translation rate is multiplied by a ribosome overhead factor λ(κ), which increases with the growth rate κ
(see SI P7). In experiments, the protein investment – measured by growth impairments after an induction
of idle protein – increases more than linearly with the protein level [4, 18]. Assuming such nonlinear
relationships, we obtain enzyme investment functions

h(u) = H

(

λ(κ)
∑

l

(κl + κ)Ll ul

)

= H

(
∑

l

h∗
l ul

)

. (17)

The enzyme prices hu
l = ∂h/∂ul (i.e. marginal enzyme investments) are given by hu

l = H ′ h∗
l , where H ′

is the derivative of the nonlinear function H . Therefore, the gradient hu is proportional to h∗ (with a
prefactor depending on u) and the curvature matrix Huu is proportional to h∗ ·h∗⊤. If H(·) is a power-law
function H(x) = xγ (e.g., with 1 ≤ γ < 2), we can use Euler’s theorem for homogeneous functions and
obtain the total cost

∑

l yl =
∑

l
∂h

∂ lnul
= γ h(u) (see SI P1.5).

Remark: The enzyme investment function can be justified by models in which protein production is included
in the metabolic network (at a given growth rate, or under an optimisation for growth).

Definition 3 (Enzyme-balanced kinetic model) A kinetic model in stable steady state and with a fitness
function Eq. (2) is called enzyme-balanced if all active enzymatic reactions satisfy the cost-benefit balance
Eq. (3). If all reactions are enzymatic and active, it is completely enzyme-balanced. Economic state
variables like the flux and concentration gains zvl and zci , economic potentials wi, economic loads pi,
enzyme prices hu

l , and enzyme costs yl are listed in Table 2.

Definition 4 (Economical flux distribution) Consider a metabolic network containing only enzymatic
reactions and a flux gain vector zv. A flux distribution v is called economical if, after reducing the model
to the active subnetwork of v, there is a positive vector y satisfying the flux gain condition (6).

Remark: Models with non-enzymatic reactions are discussed in SI S2.8.

Definition 5 (Test modes and futile modes) If v is a flux distribution, all non-vanishing flux distributions
k on the active region are called test modes of v. Let zv be a flux gain vector. If v and a non-beneficial
test mode k are sign-concordant (i.e., if all fluxes on the shared active region have the same directions),
the shared sign pattern is called a non-beneficial mode in v for zv. If v and a costly test mode k are
sign-concordant, the shared sign pattern is called a costly mode. Non-beneficial or costly modes are also
called futile.

Definition 6 (Flux cost minimisation) FBA problems are linear programming problems of the form
v = argmaxv′ zv · v′ with the constraints N v′ = 0 and vmin ≤ v′ ≤ vmax. A flux cost minimisation
(FCM) problem is a non-linear optimisation problem of the form

v = argminv′H̄(v′) such that zv · v′ = b, N v′ = 0, and vmin ≤ v′ ≤ vmax. (18)

The flux cost function H̄(v) must have a positive scaled derivative (∂H̄(v)/∂vl) vl whenever vl 6= 0. This
implies a single minimum at vl = 0. FCM problems with cost functions hv(vl) =

∑

l H̄
v∗
l |vl| and positive

flux costs H̄v
l are called weighted flux minimisation problems. An FCM problem is called flux-enforcing if

it contains flux bounds vmin
l > 0 or vmax

l < 0, i.e., if the bounds exclude the thermodynamic equilibrium
state.
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Definition 7 (Economic potential) Consider an enzyme-balanced model with metabolic return function
g(u,x,Lϕ

ind). The vector ϕind refers to independent metabolites and defines a virtual supply flux vector
ϕ = Lϕ

ind for all internal metabolites. The economic potentials are defined by the production gains
wx

j = zxj (for external metabolites), by wc
i = ∂g

∂ϕind
i

(for independent internal metabolites) and by wc
i = 0

(for dependent internal metabolites).

Remark. The definition yields economic potentials in standard gauging (referring to a given choice of
independent metabolites). The economic potentials can be regauged by replacing wc → wc +G⊤ wCM,
where G is a left-kernel matrix of N and wCM, the economic potential vector of the conserved moieties,
can be freely chosen.

Definition 8 (Economic load) Consider an enzyme-balanced model with a metabolic return function
g(u,x,ϕind,γ) depends on a virtual concentration perturbations γi. In a virtual perturbation, we replace
ci → ci + γi wherever ci appears in rate laws or in the objective function. With a γi > 0, the metabolite
level appears larger, and the system responds by decreasing the actual concentration ci until ci+γi reaches
the original value of ci. If the metabolite is involved in conserved moieties, this may not possible, and a
net deviation will remain. The economic loads are defined by pxj = ∂g

∂xj
(for external metabolites) and by

pc = ∂g
∂γ

− ∂z
∂c

(for internal metabolites), with the concentration gains ∂z/∂ci = zcm.

C Theorems of metabolic economics

Theorem 1 (Gain conditions for inverse fluxes) If a kinetic model is completely enzyme-balanced, the
cost-benefit balance Eq. (3) is equivalent to the gain conditions (6) and (7) (Proof in SI P1.2):

K⊤Dg(y)v−1 = K⊤zv

L⊤Ē⊤Dg(y)v−1 = −L⊤ zc.

Remark: In states with inactive reactions, the model must be restricted to the active region. Gain conditions
accounting for non-enzymatic reactions are given in SI S2.8.

Theorem 2 (Test mode theorem) If v is an economical flux distribution and k is a test mode, the
following holds: if k is beneficial (zv ·k > 0), then v and k share active reactions with the same flux signs;
if k is costly (zv · k < 0), they share active reactions with opposite flux signs; and if k is non-beneficial
(zv · k = 0), they share active reactions with the same flux signs and others with opposite signs.

Remark: The proof (see SI P2.2) is based on the flux gain condition (6). Without loss of generality,
we assume that v is complete. If v is economical, some positive vector y must satisfy the condition
k⊤Dg(y)v−1 = k · zv for any test mode k. If a test mode k is non-beneficial, the right-hand side
will vanish and to obtain a zero value on the left, positive and negative summands must cancel out.
Therefore, k and v−1 (or equivalently v) must contain reactions with equal signs and others with opposite
signs. Similar arguments hold for beneficial test modes (positive right-hand side) and costly test modes
(negative right-hand side). In the language of oriented matroids (used by Beard et al. in their analysis of
thermodynamic constraints), this can be stated as follows: the sign pattern of economical flux distributions
v and the sign patterns of their non-beneficial test modes must be orthogonal [22].

Theorem 3 (Criteria for economical flux distributions) If all reactions in a flux distribution v are
enzyme-catalysed, the following statements are equivalent: (i) v is economical (i.e., satisfies the flux gain
condition with positive enzyme costs); (ii) v satisfies the reaction balance (11) with some internal economic
potentials wc

i and positive enzyme costs yl; (iii) v is free of futile modes (Proof SI P2.2 and P2.3).
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Remark (1) Flux distributions without futile modes are always beneficial. This is easy to see: if v is not
beneficial (zv · v ≤ 0), it can be used itself as a futile test mode, defining a futile mode. (2) Another
criterion for economical flux distributions is as follows: v and zv can be realised by a kinetic model in
an enzyme-balanced state (with an appropriate choice of zc). This follows from the algorithm for model
reconstruction (section S3 in SI).

Theorem 4 (Flux cost minimisation and economic modes) (a) If a flux mode v solves a non-flux-
enforcing FCM problem with benefit function b(v) = zv · v, it is economical with respect to zv. The
opposite holds as well: (b) If a flux distribution is complete and economical for zv, it solves a weighted

FCM problem with benefit function b(v) = zv · v and flux prices H̄v
l =

hu
l ul

vl
. Moreover, it will solve all

FCM problems with the same benefit function and the same cost slopes (Proof SI P2.4). The Lagrange
multipliers (related to the stationarity constraint in an FCM problem) can be seen as economic potentials.

Theorem 5 (Compound law) Consider a kinetic model with a given metabolic objective. A metabolite’s
load and the flux demands of the surrounding reactions (i.e., reactions directly influenced by it) are linked
by the compound rule

pci =
∑

l

gvl Ē
vl

ci =
∑

l

[ẑvl +∆wl] Ē
vl

ci . (19)

The reactions need not be enzymatic and may comprise dilution reactions. A similar rule holds for the
loads of other quantities that directly affect the reaction rates (e.g., the temperature) .

Theorem 6 (Economic balance equations) In enzyme-balanced kinetic models, all active enzymatic
reactions satisfy a reaction balance (11) (Proof in SI P5.1)

[ẑvl +∆wl] vl = hu
l ul

between the economic potentials wi and the positive enzyme prices hu
l and enzyme levels ul. Furthermore,

all internal metabolites satisfy a compound balance (Proof SI P5.2)

pci ci =
∑

l

yl E
vl

ci

with economic loads pci and scaled reaction elasticities Evl
ci . Similar balance equations hold for external

metabolites and for other quantities that directly affect the reaction rates.

Remark (1) Models with non-enzymatic reactions satisfy the compound balances

pci ci =
∑

l∈enz

yl E
vl

ci +
∑

l∈non

y∆l Evl

ci (20)

with set “enz” and “non” of enzymatic and non-enzymatic reactions. The enzyme stress y∆l = [ẑvl +∆wl] vl
can also be seen as the benefit of a hypothetical enzyme with a level ul = 1 (proof section P5.3). (2)
Reaction balance and compound balance can be written in terms of prices and demands (instead of costs
and benefits):

ẑvl +∆wl = hu
l ul/vl

pci =
∑

l

hv
l Ē

vl

ci .
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Figure 11: Conditions for models in enzyme-optimal states. Kinetic models in enzyme-optimal states (left
box) satisfy first-order conditions (stationary state and cost-benefit balance Eq. (3), i.e. a fitness extremum)
and second-order conditions (dynamic stability, i.e. a negative definite Jacobian; and economic stability,
i.e. a negative definite curvature matrix Fuu ensuring a fitness maximum). To satisfy the cost-benefit
balance, active enzymes must exert a positive control on the metabolic return (“benefit principle”). This
is equivalent to the gain conditions (6) and (7) and implies the economic balance equations (11) and (14).
Economical flux distributions (dashed box) satisfy flux gain condition and reaction balance, are free of
futile modes, and are solutions of flux cost minimisation problems (right box).

D Optimality conditions and invariance properties

The conditions for enzyme-optimal states can be formulated in several ways. Figure 11 gives an overview.
The cost-benefit balance Eq. (3) must hold for all active reactions. As a consequence, a model must satisfy
the gain conditions (6) and (7) on its active region, and equivalently the balance equations (11) and (14).
All these equations are necessary conditions for enzyme-optimal states (proof in SI P1.2). Notably, the
conditions consist of two groups: the flux gain condition, on the one hand, stems from the summation
theorem and is related to flux gains zv and the reaction balance; the concentration gain condition, on the
other, stems from the connectivity theorem and is related to concentration gains zc and the compound
balance. Both conditions complement each other, and one may use the reaction balance while disregarding
the concentration-dependence of the metabolic objective. The flux gain condition plays a central role: it
excludes futile modes and links metabolic economics to flux cost minimisation. All balance equations can
equally be applied to reactions, pathways, and the entire metabolic network.

It is interesting to compare the benefit principle to other optimality criteria used in flux analysis. In methods
like FBA with minimal fluxes, fluxes are treated as free variables without any account of kinetics, and trade-
offs between metabolic pathways are modelled by heuristic flux cost functions [10, 20]. Flux costs are a
less plausible assumption than enzyme costs, but they can be computed without kinetic information, which
makes them suitable for flux analysis. The principle of minimal fluxes [10] postulates that fluxes must
satisfy the FBA constraints (stationarity and flux bounds), yield a fixed metabolic benefit, and minimise
the sum of absolute fluxes. This cost function can also be generalised: by weighting the fluxes differently,
we obtain flux cost functions H̄(v) =

∑
H̄v∗

l |vl| (“weighted flux minimisation”). In flux cost minimisation
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(FCM), the cost function H̄ can be general continuous functions: the only restriction is that the derivatives
∂H̄/∂vl and fluxes vl must have equal signs. An FCM problem is called flux-enforcing if it contains positive
lower or negative upper bounds, i.e. if the equilibrium state v = 0 is excluded by the constraints18. FCM
and metabolic economics rely on different assumptions, but constrain the flux directions in similar ways.
The flux cost minimisation theorem (Theorem 4) shows that solutions of non-flux-enforcing FCM problems
are economical, that all economical flux distributions are solutions of FCM problems, and that the economic
potentials are related to Lagrange multipliers in the FCM problems. Accordingly, given an enzyme-balanced
state with flux gain vector zv, we can construct various FCM problems with the same flux objective zv · v
and different cost functions H̄. All these FCM problems will yield economical flux distributions and any
economical flux distribution can be generated in this way. Flux-enforcing FCM problems need to be excluded
because the flux bounds could enforce futile modes. The equivalence between flux and enzyme optimality
holds for FCM in general and for weighted flux minimisation in particular, and weighted flux minimisation is
a good way to obtain economical flux distributions in practice. Each choice of the flux cost function yields
a different solution and by sampling them, all possible economical flux distributions could be obtained.

Metabolic economics, as a theory, shows some general invariance properties: models may be formulated
in different ways, but describe the same reality and make the same predictions. For instance, an shift
or a joint rescaling of return and investment functions has no effects because their derivatives, and not
their absolute values appear in the balance equation. Likewise, if models contain conserved moieties, the
economic potentials wc can be gauged while leaving the differences ∆w unchanged (see SI S2.3).

An important decision in modelling concerns the reactions included in the network and the external metabo-
lites marking its boundaries. A metabolic pathway may either be described in isolation, with external
metabolites on its boundary (model A), or embedded in a larger network with the boundary metabolites
being internal (model B). In the two cases, the same metabolic objective must be formulated differently:
in model A, the objective function can only score metabolites and reactions within the pathway; in model
B, it may score variables in other regions of the network. Nevertheless, both models describe the same
reality and should therefore show the same metabolic and economic state. Thus, there must be different
fitness functions for which the same enzyme levels and the same metabolic state can be optimal. We
can achieve this by matching the metabolic states and economic potentials between both models. The
economic potentials of the boundary metabolites in model B can be transferred to model A, thus defining
an effective objective function for this model.

As another example, consider two models of a chemostat culture: model A comprises the cell and treats
substance in the growth medium as external (with fixed concentrations). Model B describes them dy-
namically and their concentrations are governed by the chemostat equation (comprising in- and outfluxes
of the chemostat and cellular uptake or secretion rates). In model A, the extracellular substances will
affect the cells’ fitness by their concentrations as described by economic loads pci = ∂g/∂xi. In model B,
they affect the fitness by uptake rates as described by economic potentials wc

i = ∂g/∂ϕtot
i . Again, both

models describe the same situation. We consider a concentration variation δxi in model A, and to achieve
the same variation in model B, we assume a supply flux δϕind

i =
∑

l Ē
vl
ci δxi (summing over all reactions

that produce or consume the metabolite). Accordingly, the economic load in model A and the economic
potential wc

i in model B are related by pci =
∑

l Ē
vl
ci w

c
i .

E Extending the theory

Metabolic economics, as developed so far, pictures cells in a very simple way. Reactions are catalysed by
specific enzymes, a static enzyme profile leads to a steady stationary state, the metabolic return depends

18Flux-enforcing bounds may be used to model a baseline consumption of ATP in maintenance reactions. In metabolic
economics, flux bounds are implemented by constraints. The resulting Lagrange multipliers can appear as effective gains
into the vector zv (see SI S2.4), based on which futile modes are defined. When comparing metabolic economics to FCM
problems, these effective gains reappear in the vector zv used in the FCM problem.
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only on fluxes and concentrations, and the enzyme levels are optimised. Real cells, in contrast, show
dynamic behaviour, operate in uncertain environments, and may show non-optimal states. Metabolic
economics can be extended to address this (for details, see SI S2).

Isoenzymes and unspecific enzymes First, we can discard the premise “one reaction, one enzyme”. Bio-
chemical reactions can be catalysed by several enzymes (isoenzymes), and enzymes may catalyse multiple
reactions (unspecific or multifunctional enzymes). In models, isoenzymes can be described by separate
reactions, and unspecific enzymes can be captured by a modified reaction balance (see SI S2.2). The com-
pound balance remains unchanged, but the reaction elasticities will have smaller values because enzymes
split their activity between several reactions.

Constraints on state variables In the optimisation of enzyme profiles, we may put constraints on metabo-
lite levels, fluxes, or enzyme levels. For instance, certain enzyme fractions may be limited by space restric-
tions, and cells may need some minimal ATP level to survive. In the optimisation problem, this is described
by inequality constraints, and the corresponding Lagrange multipliers will appear as effective gains or prices
in zv, zc, and hu (SI S2.4). As an example, consider the positivity constraint for enzyme levels: when
an enzyme level hits the constraint at ul = 0, the corresponding Lagrange multiplier can be treated as an
effective price hu

l
∗ and the cost-benefit imbalance gul < hu

l becomes an equality gul = hu
l − hu

l
∗. Likewise,

constraints on fluxes or metabolite levels can give rise to effective gains. For instance, assume that the
flux of a maintenance reaction is kept above some lower bound by a flux constraint. If the flux hits the
bound, the Lagrange multiplier, as an effective gain zvl

∗, adds to the direct flux gain (and thus, to the
flux demand) of that reaction. In the reaction balance, this term can justify a flux even if no valuable
compounds are produced. Similarly, upper bounds on enzyme levels could be used to limit the enzyme
abundance in cells, in compartments, or on membranes (e.g. the photosystem or ATP synthases in energy
metabolism).

Soft constraints on enzyme levels Instead of limiting the metabolite levels, fluxes, or enzyme levels by
hard constraints, we may penalise them by cost terms. As an example, consider the positivity constraint
ul ≥ 0 for enzyme levels. Instead of using the constraint, we may penalise small enzyme levels by a penalty
term that increases strongly as ul goes to zero. This term may be justified by assuming leaky protein
expression whose suppression would consume additional resources. With a penalty term instead of hard
constraints, the “inactive enzymes” in an optimal state will have small, positive levels. The penalty cost
corresponds to the effective cost that would arise from the hard constraints (see SI S2.4).

The balance equations (11) and (14) describe two basic constellations: a reaction with its reactants, and
a metabolite with reactions around it. Balance equations for other network elements, such as allosteric
effectors, can be derived. For reactions affected by several parameters, we can sum over their equations and
obtain a balance between flux demand and the parameter’s weighted average price gvl = 〈hp

n/Ē
vl
pn
〉 (proof:

from
∑

p g
v
l vl =

∑

p h
p
n pn/E

vl
pn

follows gvl vl =
1
N

∑

p h
p
n pn/E

vl
pn
). If several reactions are affected by one

parameter, we can sum over the reaction balances and obtain a balance between the elasticity-weighted
average flux demand and the parameter price

∑

l g
v
l Ē

vl
pn

= hp
n (proof:

∑

l g
v
l vl E

vl
pn

= hp
n pn). In fact, the

reaction balance is a special case of the compound balance, treating the enzyme as an external compound
with elasticities Ēvl

xj
= vl

ul
and a load pxj given by the enzyme price hu

l .

Non-optimal states Enzyme optimality can be a helpful hypothesis, but may not hold for real cells. Even
if cells tended to optimise their enzyme levels, and even if our fitness function captured all relevant fitness
requirements, enzyme levels could still be maladapted, for instance after sudden perturbations. Knock–
downs or artificial enzyme expression can enforce non-optimal enzyme levels, and leaky transcription can
cause an enzyme expression where reactions should be inactive. When enzyme benefit and cost do not
match, we obtain an economic imbalance y∆l = ∂f

∂ lnul
. With this term, we obtain the reaction imbalance

[∆wl + ẑvl ] vl = yl + y∆l (21)
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for non-optimal states (see SI S2.7). Likewise, we obtain balances between enzyme demand and price,

[∆wl + ẑvl ]
vl
ul

= hu
l + fu

l (22)

with the enzyme stress fu
l = ∂f

∂ul
, or between flux demand and flux price

∆wl + ẑvl = hv
l + fv

l (23)

with the flux stress fv
l = 1

vl

∂f
∂ lnul

. Positive economic stresses (or flux stresses whose signs match the

flux direction) show that an enzyme upregulation would be profitable, i.e., the enzyme’s marginal benefit
exceeds its cost. If non-optimality has been enforced by constraints (e.g., if an enzyme knock-down is
modelled by fixing the enzyme level at a lower value), the effective gain caused by the constraint will
appear as a flux stress. Situations in which organisms are missing an enzyme (but may evolve it) can be
described similarly: the selection pressure for an enzyme with flux demand gvl = ∆wl + ẑvl is given by
Eq. (23). If it exceeds the evolutionary cost [23, 24], the enzyme could be expected to evolve.

Non-enzymatic reactions Also non-enzymatic reactions can play a role in metabolic models. Such
reactions can degrade valuable metabolites or produce toxic metabolites, which would compromise the
metabolic performance. Although these reactions are not directly regulated by enzymes, they may be
compensated or controlled by enzymatic reactions. This affects the optimal choice of enzyme levels. For
instance, if a metabolite is only needed as a catalyst, but not as a pathway intermediate, it should just exist
at a constant concentration and not be produced nor consumed. However, if the metabolite is degraded
non-enzymatically, enzymes need to produce it continuously to keep it at the right level. The resulting
flux will look futile because economic potential is constantly produced and destroyed. In fact, it would
be futile if all reactions were enzymatic. However, if the degradation reaction is non-enzymatic, such a
pseudo-futile mode may be the best the cell can achieve, and the flux distribution must be described as
economical by our theory.

To ensure this, we need to modify some details of metabolic economics: (i) Test modes (used to define
futile modes) can only contain enzymatic reactions. (ii) The gain conditions (6) and (7) must contain
terms for non-enzymatic reactions (details see SI P1.4). (iii) The reaction balance holds only for enzymatic
reactions. To obtain reaction balances for non-enzymatic reactions, we can assume that they are catalysed
by hypothetical enzymes with non-optimal levels (see SI S2.7), entailing an economic imbalance y∆l =
∂f/ lnul on the right-hand side of the reaction balance (21). A positive imbalance y∆l describes which
enzyme costs would be economical if the reaction were enzymatic. A negative imbalance, in contrast,
describes a loss (negative benefit) in a non-enzymatic reaction. (iv) In the compound balance, there are
additional terms related to non-enzymatic production, degradation, or dilution of the metabolite. These
terms do not represent enzyme costs, but (possibly negative) flux benefits. (v) The definition of economic
potentials and loads, as well as the compound rule, remain unchanged.

The dilution in growing cells can effectively be described as a non-enzymatic degradation of all metabolites.
This will not only affect the stationary fluxes and the model dynamics, but also its economics, e.g.., the
metabolite and enzyme demands. To adapt our formulae (e.g., the gain conditions and economic balance
equations), we describe the dilution of each metabolite i as a first-order non-enzymatic degradation with
rate κ ci (where κ is the cell growth rate). This leads to an extra term −κI in the Jacobian matrix
and changes the summation and connectivity theorems for control coefficients (P2). Gain conditions and
balance equations also obtain new terms (see SI P1.2). To see this, consider the reaction balance in an
unbranched metabolic pathway with production objective: if the internal metabolites are diluted, the fluxes
vl decrease along the chain. Since z

c = 0, the sum rule
∑

l yl =
∑

l z
v
l vl must still hold. If we compare this

model to a model without dilution and the same flux benefit, the sum of marginal costs
∑

l yl =
∑

l h
u
l ul

must be higher in the presence of dilution.

Multiple objectives and preemptive expression In metabolic economics, the metabolic objective can
depend on all fluxes and metabolite levels. Which of these variables are relevant in reality, and in which
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Figure 12: Metabolic economics with mixed objectives. (a) Alternating metabolic objectives. Different
metabolic objectives z(n)(v, c) (represented by colours) occur with average durations τ(n). (b) Metabolic
objectives can be uncertain, either because the cell has vague information about its environment or because
it needs to “guess” future requirements appearing with probabilities pn. In both cases, enzyme levels can
be optimised for convex combinations of the objectives with weights pn. (c) Multi-objective optimisation.
Pareto-optimal states are states in which an improvement in one objective entails losses in other objectives.
The tangent vector of the Pareto surface must have at least one negative component. The condition
for Pareto-optimal states is equivalent to an optimality condition for a mixed objective (i.e., a convex
combination of the objectives).

combinations? The metabolic objective in a given state is characterised by gain vectors zv and zc. The
non-zero elements, signs, and values in gain vectors show which state variables should be high or low. In
addition, there may be “effective gains”, Lagrange multipliers arising from flux or concentration constraints
and indicating which state variables hit upper or lower bounds. A pure metabolic objective depends on one
state variable only, and its gain vectors contain a single entry (e.g., related to one product to be produced).
General objectives score several variables and their gain vectors have several non-zero elements. However,
cells may not just have a single objective, but varying or opposing objectives. If the external conditions
are fixed and only the objectives are changing, we can replace such multi-objective problems by problems
with a single mixed objective. Given a number of objective functions g(n)(u), mixed objectives are convex
combinations g(u) =

∑

n λng(n)(u) with positive weights λ > 0 normalised to 1, and the mixed gain
vectors read zv =

∑

n λnz
v
(n) and zc =

∑

n λn z
c
(n). Using mixed objectives, we can describe different

types of optimality problems (see Figure 12):

1. Adaption to rapidly changing requirements Assume that a cell’s objective alternates between
different objective functions with average durations τn. If these changes are much faster than
enzyme levels can be adapted and if the environmental conditions (e.g., the external concentrations)
remain fixed, cells can optimise their average fitness by an adaption to the average objective 〈zv〉 =
∑

n pn z
v
(n), where pn = τn/

∑

m τm.

2. Uncertain objectives Uncertainties about the objective can arise for different reasons: because
cell signals contain too little information about the cell’s current situation or because cells need to
“anticipate” future demands (proteins are always produced ahead of time, with a delay between
production and the last usage given by the production time plus the effective protein lifetime). To
be prepared for different objectives (with flux gain vectors zv(n) and probabilities pn), cells may
maximise their expected fitness, with an average gain vector 〈zv〉. Such “bet-hatching” strategies
are not only important in completely uncertain situations, but also in stable and certain environments
with a small chance for deviating objectives [25, 21]. An optimisation with mixed objectives yields
mixed enzyme profiles. This may explain preemptive enzyme expression observed in real cells.

3. Compromise between opposing objectives Usually, one enzyme profile cannot optimise several
objectives. However, we can consider compromise strategies in which none of the objectives is fully
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optimised, but any possible improvement in one objective would compromise the others. Vilfredo
Pareto used this criterion to describe compromises between social agents with opposing interests.
Following the use in flux analysis [26], we can use his criterion to describe trade-offs between opposing
objectives in metabolic systems. The Pareto-optimality problem can be reduced to an optimisation
with mixed objectives: for each Pareto-optimal state, there is a mixed objective g =

∑

n λn g(n)
whose optimality condition is equivalent to Pareto’s optimality condition. The weights λn must be
positive and sum to 1 like probabilities. To determine potential Pareto-optimal states, we can sample
such weights, determine mixed gain vectors 〈zv〉 =

∑

n λn zv(n) and 〈zc〉 =
∑

n λn z
c
(n), and use

them in metabolic economics. This will yield all solutions to the multi-objective problem, and maybe
others that are not on the Pareto front for a specific kinetic model.

Other control variables In metabolic economics, enzyme levels are not explained mechanistically (by pro-
cesses like transcription, translation, and protein degradation), but determined from optimality principles.
Why are enzyme levels, and not for instance mRNA levels, described as control variables? This choice
is not fixed, but depends on the modeller’s questions: if our system of interest is the metabolic network
and if enzyme levels appear as its parameters, it is natural to treat them as control variables. If enzyme
production is included in the metabolic network, other quantities like enzyme transcription rates or mRNA
levels could be control variables. In other cases, even the dilution rate (and thus, growth), could be a
controllable parameter to be optimised. There may be cases in which several quantities affect the same
reaction or one quantity affects several reactions. For a control parameter pn affecting a single reaction
(with parameter price hp

n and elasticity Ēv
pn
), we obtain the balance equation gvl vl = hp

n pn/E
vl
pn
. What-

ever control variables are chosen, they must be penalised by a investment function, or the fitness function
must depend on them in contrary ways that create a trade-off between costly and beneficial effects.
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