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Abstract

Cells need to make an efficient use of metabolites, proteins, energy, membrane space, and time, and

resource allocation is also an important aspect of metabolism. How, for example, should cells distribute their

protein budget between different cellular functions, e.g. different metabolic pathways, to maximise growth?

Cellular resource allocation can be studied by combining biochemical network models with optimality problems

that choose metabolic states by their cost and benefit. Various types of resource allocation problems have

been proposed. The underlying mechanistic models may describe different cellular systems (e.g. metabolic

pathways, networks, or compromises between metabolism and protein production) on different level of detail

and using different mathematical formulations (e.g. stoichiometric or kinetic). The optimality problems may

use metabolite levels, enzyme levels, or fluxes as variables, assume different cost or benefit functions, and

describe different kinds of trade-offs, in which cell variables are either constrained or treated as optimisation

objectives. Due to all these differences, optimality problems may be hard to compare or combine. To bring

them under one umbrella, I show that they can be derived from a common framework, and that their optimality

conditions all show the same mathematical form. This unified view on metabolic optimality problems can

be used to justify and combine various modelling approaches and biochemical optimality problems.
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1 Introduction

Living cells cannot be understood in their full complexity, and because we cannot do so, we need to describe them

by simplified pictures. These pictures – in the simplest case, network graphics including reaction stoichiometries,

kinetic rate laws, etc. – may be turned into mathematical models, and these models, nevertheless, can be complex,

combining biochemistry, network structures, chemical dynamics, regulation, genetics, and even evolution. Most

of them portray cells as chemical reaction systems (as if cells were test tubes) or as information-processing devices

(as if cells were computers), thus focusing on mechanisms, dynamics, and regulation. However, cells are believed

to also make efficient use of nutrients, proteins, energy, intracellular space, and opportunities provided by their

ecological niches, or choosing good compromises between all these needs. This idea of an economical behaviour,

or optimal resource allocation, appears in many topical questions in cell biology. For example, what determines the

advantages of different pathways, e.g. pathways performing fermentation and respiration for ATP regeneration, or

the preferences for specific carbon sources? How does cell growth depend on metabolism and protein production,

and how should these two be orchestrated? Such questions are not about simple choices between a few options,

but about complicated dependencies between thousands of cell variables. For example, given that an ATP-

producing pathway relies on enzymes and that enzyme production itself requires ATP, how should the pathway

flux respond to varying ATP demands or to a forced expression of protein somewhere else in the cell?

To address these questions, we may compare a cell to a factory whose production processes are adapted to

the market prices of materials, energy, and the goods produced, and metabolic pathways would correspond to
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(a) Yeast proteome (b) Cost and benefit in a metabolic pathway (c) Benefit terms in enzyme space
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Figure 1: Protein profiles in cells result from a compromise. (a) Measured protein abundances in the budding
yeast S. cerevisiae, shown as a proteomap [1] (data from [2]). Proteins are represented by polygons (where sizes
represent abundance) and arranged by cellular functions (larger areas). (b) Cost and benefit of enzymes in a
simple metabolic pathway. The enzyme levels (scored by a cost) determine the metabolite concentrations and
fluxes in steady state (scored by cost and benefit) as described by a kinetic model. (c) Space of enzyme profiles,
with cost and benefit functions shown as hypothetical benefits (redrawn from [3], where a similar model has been
analysed). Enzyme profiles that allow for a high metabolic flux (blue lines) at low metabolite levels (brown lines)
and enzyme levels (red lines) provide a selection advantage. If all three terms are described as benefits (“flux”,
“negative intermediate accumulation”, and “negative protein burden”), the sum of benefits is maximised exactly
in a point where the three benefit gradients cancel out (“balanced pathway”). While the gradient of the (negative)
protein cost is a simple function in enzyme space (assuming that protein cost itself is a simple function), the other
two gradients depend on enzyme levels in an indirect way, as described by the kinetic pathway model.

commodity or value chains. The resulting models do not only describe metabolic behaviour, but also the ensuing

profits, i.e. growth advantages or the corresponding selection pressures. This is a third level of description beyond

metabolic networks and computational models describing the biochemical dynamics, a functional description

that states how processes or compounds are used to create benefits. In such a description, we consider a

mechanistic cell model, postulate biological objectives, and formulate an optimality problem in which some model

variables (e.g. enzyme levels) are not described mechanistically (e.g. by assuming a biochemical model of enzyme

production and degradation), but are treated as controllable parameters: we need to choose their values in order

to optimise some objective function. These types of problems are the topic of this article. On top of the levels

of “topics” (describing the “anatomy” of cellular networks) and “dynamics” (describing physiological compound

concentrations and reaction rates), these problems introduce a third level of biological function, which may be

called “cellular economics”. To model resource allocation in cells, mechanistic and economic modelling need to

go hand in hand. Here, I focus on such optimality problems, describing how cells should behave to achieve some

objective, e.g. to maximise their growth rate and how this is reflected in the usage of individual pathways.

Before we model the cell as a whole, let us focus on metabolism. Metabolic performance is greatly enhanced by

enzymes, but their production, maintenance, and space requirements put a burden on cells, and the thrust to

keep this burden low has a major impact on metabolic states. Therefore, models should describe not only the

dynamics, but also the optimal allocation of protein and metabolite levels. For example, Figure 1 (a) shows an

overview of protein investments in yeast: almost half of the protein budget is devoted to metabolic enzymes, and

a large fraction of them to glycolysis. This raises various questions. How can this pattern be explained? How

does it depend on metabolic network structure, enzyme kinetics, enzyme sizes, and metabolic demands? And how

can we predict the investment in individual enzymes? For example, some enzymes contain trace elements such as

metal atoms; if a metal such as iron is rare, how will this affect the usage of iron-containing and iron-converting

proteins, and how will these changes further affect the entire proteome? How should enzyme levels be chosen

to maximise cell fitness, and what metabolic states will emerge from these choices? How can optimal enzyme

investments be predicted from network structure, enzyme kinetics, and thermodynamics? And how can we use
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Box 1: Optimality-based metabolic models

Flux balance analysis

Constraint-based models (CBM) for Flux Balance Analy-
sis (FBA) predict metabolic fluxes from network structure,
stationarity, and optimality criteria such as high metabolic
production or low enzyme demand. Given cost and bene-
fit functions for fluxes, the aim is to find flux distributions
with a maximal benefit under constraints [4], a maximal
benefit at a given cost [5], or a minimal cost at a given
benefit [6]. Constraint-based models do not describe en-
zyme kinetics: enzyme levels are either ignored or treated
by simplified rules, e.g. assuming that enzyme levels and
fluxes are directly proportional. Metabolite concentrations
can appear as variables, but usually only to formulate ther-
modynamic constraints on the fluxes (flux directions depend
on the mass-action ratio of reactants).

Kinetic pathway model

S A B P
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Enzyme cost
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Kinetic models describe the dynamics of compound concen-
trations and can be used to model metabolism, signalling,
gene expression, or the allocation of protein resources
to metabolism or ribosomes. Enzyme levels, fluxes, and
metabolite concentrations are linked by rate laws. Given
all enzyme levels and initial conditions, a metabolic state
can be computed by numerical integration. To find opti-
mal metabolic states, the enzyme levels may be optimised1,
e.g. to provide large production fluxes at low total enzyme
amounts (see Figure 1) [9, 10]. To model metabolism in
growing cells, the dilution of compounds can be taken into
account. The growth rate can be treated as a given param-
eter, as a dynamic variable, or as a variable to be optimised.

Cost minimisation in metabolite space

ln
 c

ln c

Given a desired metabolic flux distribution, we may search
for metabolite and enzyme levels that realise these fluxes at
a minimal biological cost. Such enzyme and metabolite lev-
els follow from an optimality problem in metabolite space
[11], called enzyme cost minimisation (ECM): we consider
a kinetic model, choose a flux distribution, and search for
enzyme and metabolite levels that realise these fluxes at
a minimal cost. The cost function may include a direct
metabolite cost and a cost for the enzyme levels required.
Given metabolite levels and fluxes, the enzyme levels are ob-
tained by a simple formula, and the resulting optimisation
is a convex optimality problem in log-metabolite concentra-
tion space.

Model of growing cells

Metabolism Biomass

Enzymes

Ribosomes

In microbial whole-cell models, a typical objective is to max-
imise growth while keeping all cell compounds at physiolog-
ical levels. To compensate for their constant dilution, the
cell needs to reproduce all metabolites, enzymes, ribosomes,
and so forth. Whole-cell models can be constraint-based or
kinetic. Resource balance analysis [12, 13] is a constraint-
based method that covers metabolism, enzyme and ribo-
some production, and processes such as protein folding by
chaperones. Fluxes and enzyme levels are treated as strictly
proportional. The aim is to obtain a steady state at a fixed
growth rate, and to determine the maximal dilution rate at
which this condition can be met. Kinetic whole-cell models
are usually much smaller. For example, the aim may be to
maximise growth by optimising the production of different
sorts of proteins, for protein production (catalysed by ribo-
somes) or metabolism (catalysed by metabolic enzymes),
[14], the kinetic constants that determine the allocation of
protein may be optimised.

such a reasoning in practice, to predict fluxes or to engineer metabolic pathways?

Protein allocation has been studied by different types of models, including constraint-based models, kinetic

models, and whole-cell models (see Box 1). These models describe metabolic pathways or networks, consisting

of compounds, chemical reactions between them, and enzymes that catalyse the reactions. In network models,

chemical conversion is described as a “flow of matter”: for example, glucose molecules enter the cell and be

converted, in various steps, into carbon dioxide; in this process, carbon atoms “flow” through the reaction

network. The metabolite concentrations can change in time: if a metabolite is faster produced than consumed, its
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Enzymes Metabolites Fluxes Growth
Maximise benefit (at given cost) [15] [5] [14, 13]
Minimise cost (at given benefit) [11] [11] [6, 16]
Optimise weighted difference [9] [11] (with benefit term)
Multi-objective optimisation [17]

Table 1: Metabolic trade-offs can be modelled in different ways. The control variables (to be varied in optimality
problems) can be either enzyme levels, metabolite levels, or fluxes. The metabolic states can be scored by
different cost and benefit functions, and trade-offs can be modelled by maximimising a benefit-cost difference, by
maximising a benefit at a fixed cost, by minimising a cost at a fixed benefit, or by multi-objective optimisation.

concentration increases; if consumption is faster, its concentration decreases; and if production and consumption

are balanced, its concentration remains constant. A steady state is a state in which all internal concentrations

remain constant, and to guarantee this, all fluxes have to be balanced. Network models can be coarse-grained

or fine-grained and describe smaller or larger parts of the cellular systems. They can cover various of processes,

including metabolism, cell signalling, gene expression, protein and mRNA synthesis, and even an entire cell. They

can describe possible cell states (e.g. constraint-based flux models), actual dynamics (e.g. kinetic metabolic

models), or desired behaviour (e.g. optimality-based models). There are two main types of biochemical network

models: kinetic models, which describe the joint dynamics of metabolite concentrations, enzyme concentrations,

and fluxes; and flux analysis (or “constraint-based” models (CBM)), which assume stationary flux distributions,

but ignore their relation to metabolite or enzyme levels. These different modelling approaches, or “paradigms”,

make different assumptions, but share some of their equations, e.g. the conditions for steady states.

Usually, economical behaviour in cells implies compromises between opposing needs, e.g. between the costs and

benefits of different biochemical processes. The aim is to find a global solution in which all subsystems of the cell

interplay in an optimal manner. Mathematically, the search for such states can be formulated as an optimality

problem: we model a biochemical system mechanistically, assume various physical and physiological constraints,

and optimise objectives such as substrate or enzyme efficiency, use of resources, or maximal cell growth. An

example is shown in Figure 1 (b): in a small metabolic pathway, the enzyme levels need to optimise a trade-off

between three objectives: a benefit for high flux, a cost for high enzyme levels, and a cost for unfavourable (high

or low) metabolite levels. What will the optimal enzyme levels look like?

Metabolic optimality problems can be categorised by several criteria (Table 1). First, by the choice of cell variables,

i.e. whether enzyme levels, metabolite levels, and fluxes are treated as parameters, free variables, or dependent

variables. Second, by stating how the cell variables are scored by metabolic objectives. And third, by how

trade-offs between these objectives are formulated, i.e. which objectives are bounded by constraints, and how

they contribute to the overall objective – or whether multi-objective optimisation is applied. Aside from the

previous aspects, metabolic optimality problems differ in various other ways. Some models are kinetic, others

are constraint-based; some describe metabolism only, others include protein production and other cell processes;

some use metabolic objectives (e.g., maximising a pathway flux), others use cell objectives (e.g. maximising cell

growth). With all these differences, different models may be hard to compare and combine, and so a unified

framework would be desirable. To obtain such a framework, we might ask what is common to the different

modelling approaches. First, all these approaches rely on metabolic network models. Second, different models

may even describe the same pathways and may use the same biochemical parameter values. Third, despite their

different formulations, different models may make exactly the same predictions (e.g. optimisation of enzyme

levels, or optimisation of metabolite levels at given optimal fluxes). If different optimality problems, for the same

mechanistic cell model, make the same assumptions (e.g. that high enzyme levels are costly), either explicitly (by

a penalty term for large enzyme levels) or implicitly (because enzyme production, within the model, consumes

resources), then can we assume that they will also yield the same results? And if so, what are the reasons for this

equivalence, and where are its limits?

4



Here I consider different optimality problems for metabolism, and will show how to describe them by a unified

framework. Starting from simple optimality problems, as in Figure 1, how to characterise optimal states in

general, especially for large metabolic networks. If we reformulate this problem with fluxes or metabolite levels

(instead of enzyme levels) as the basic variables, how will these different problems, their optimality conditions,

and their solutions be related? And how can different optimality approaches (with their ad hoc assumptions

and approximations) be reconciled, and possibly be combined? I describe these different approaches as special

cases of a single optimality problem, an optimisation on the set of feasible metabolic states, where each state

is characterised by fluxes, metabolite levels, and enzyme levels. These variables can be scored by different

metabolic objectives, and there can be trade-offs between them. No matter how we formulate the trade-

offs, the resulting optimality problems will share optimality conditions of the same form. The shared optimality

conditions allow us to recognise the optimality problems as equivalent.

2 Metabolic optimality problems

Mathematical cell models can rely on different formalisms and describe different sorts of variables. Here, we

consider models describung metabolic pathways or networks by their fluxes, metabolite concentrations, and enzyme

concentrations (in vectors v, c, and e). The variables are related by kinetic rate laws, and to keep things simple,

we only consider steady states and disregard dilution by cell growth (although this could be added if necessary).

As a general frame, this covers various kinetic and stoichiometric modelling approaches. To define an optimality

problem, we assume that a pathway contributes to cell fitness in three ways: by a flux benefit b(v), a metabolite

cost q(c), and an enzyme cost h(e), and that the cells maximises a fitness2

f(v, c, e) = b(v)− q(c)− h(e). (1)

The three terms in this fitness will be called metabolic objectives (in contrast to the “mathematical objectives”

described below ), and their usage can be justfied by deriving them from whole-cell models with maximisation

of growth or other whole-cell objectives. Whether fitness terms are described as benefits (to be maximised)

or as costs (to be minimised) is a matter of convention. We may also split an objective into sub-objectives,

e.g. separate several cost or benefit terms that score the production or consumption of different compounds,

and apply the same mathematical formalism. Maximising the fitness (1) is a way to model trade-offs between

our metabolic objectives. The objectives in the formula may also be weighted by prefactors. Other ways of

describing trade-offs, including constraints on some of the metabolic objectives, or multi-objective optimisation,

will be discussed below. Our fitness function (1) tells us which metabolic states (comprising fluxes, metabolite

levels, and enzyme levels) are desirable, but not which states are actually possible (given that state variables

depend on each other physically). To describe this, we need a kinetic model that defines a set of feasible states.

A kinetic model describes a flux vector v, a metabolite profile c, and an enzyme profile e, and links them by rate

equations and enzymatic rate laws:

dc

dt
= Nint v, v = v(c, e). (2)

Metabolites with fixed concentrations (“external metabolites”) appear in the rate laws vl(·) as parameters. Some

of the state variables may be restricted by physiological bounds (e.g. minimal and maximal metabolite levels, or

an upper bound on their sum). In stationary states (also called steady states), metabolite levels and fluxes are

2Assuming separate benefit and cost terms for fluxes and concentrations is a matter of convenience. The approach works for all
fitness functions f(v, c, e) that are reasonably well behaved and increase monotonically in the enzyme levels.
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constant in time, and so the vectors v and c must satisfy

Nint v = 0, v = v(c, e). (3)

Two important features of metabolic models – conserved moieties and stationary fluxes – can be inferred from

the stoichiometric matrix. The internal stoichiometric matrix Nint has a left-kernel matrix G and a right-kernel

matrix K, satisfying, respectively, GNint = 0 and Nint K = 0 (these matrices may also be empty). The rows

of G (and their linear combinations) describe linear conservation relations: for any column g of G>, the product

g · c will be constant in time. Given the initial values of the conserved moiety concentrations, ccm, this implies

the constraint

Gc = ccm = const. (4)

Each row describes a conserved moiety (e.g. the total number of phosphate groups in the system, assuming that

phosphate groups are only transferred between molecules, and cannot enter or leave the system). In models with

moiety conservation (i.e. with an non-empty matrix G), Nint can be split into a product Nint = LNind where the

rows of Nind refer to independent internal metabolites. The link matrix  L relates these independent metabolites

to the set of all metabolites. The columns of K (and their linear combinations) describe possible stationary fluxes.

If we model only the fluxes, assume that the flux distributions must be stationary (such flux distributions will be

called “metabolic flows”), and put bounds on the fluxes (e.g., maximal fluxes or predefined flux directions), we

obtain the constraints of Flux Balance Analysis (FBA) [18],

Nint v = 0 where vmin ≤ v ≤ vmax. (5)

In FBA, additional optimality criteria are used to select a single flux distribution. In classical FBA, we maximise a

linear benefit function b(v), corresponding to the first term in Eq. (1). A typical choice is the biomass production

rate, i.e., the flux in the biomass-producing reaction. In FBA with molecular crowding, we additionally consider

a weighted sum of the fluxes as a proxy for the presumable enzyme demand and constrain it by an upper bound.

In Flux Cost Minimisation (FCM), conversely, we predefine a flux benefit value (e.g. the biomass production

rate) and minimise a flux cost a(v) (e.g. the sum of absolute fluxes, in the case of minimal-flux FBA). Flux

cost functions may represent a demand for enzymes, which entail a growth deficit. To be meaningful, flux cost

functions should increase with the absolute flux |vl| and show a minimum at vl = 0. This implies that the scaled

derivatives ∂a/∂vl) vl be positive (for flux cost functions representing optimal enzyme costs, we find in fact that

∂a/∂vl vl = ∂h/∂ul ul > 0). If we put a positive lower bound on |∂a/∂vl|, the flux cost must show a kink at

vl = 0 (which excludes the sum of quadratic fluxes as a meaningful flux cost function).

The laws of thermodynamics impose that shape the possible metabolic states. The direction of each reaction flux

is determined by the ratio of product and substrate concentrations, called mass-action ratio. This relationship

holds for any reversible, thermodynamically correct rate law, and shapes the metabolic fluxes in networks. As

the mass-action ratio in a reaction increases from small to large values, the flux flips from forward to backward

direction. The flip happens at a specific mass-action ratio, called equilibrium constant Keq. We can also describe

this by defining the thermodynamic driving force θl = lnKeq,l −
∑
l nil ln ci, i.e. the negative Gibbs free energy,

measured in units of RT . The force must be positive for reactions with forward flux, and negative for reactions

with backward flux (loose sign constraint). If we assume that any non-zero driving forces will lead to a flux, we

obtain the strong sign condition. The weak sign condition reflects the fact that the driving force determines the

ratio v+/v− = eθ of forward and reverse one-way fluxes [19]: a positive flux (where v+ > v−) requires a positive

force, and a negative flux requries a negative force. The strong sign condition makes an additional assumption:

that the one-way fluxes can never vanish, even in the absence of enzyme. Consequences for possible flux patterns
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are described in SI section S1.1.

If flux directions are predefined, they put constraints on the possible metabolite levels. These constraints, together

with the physiological ranges, define what metabolite profiles are possible. Some (hypothetical) flux modes cannot

be realised by any metabolite profile because they contain loops, and concentrations would have to decrease in a

circle [20]. Such flux profiles would represent a perpetuum mobile and can be excluded. Other flux distributions are

thermodynamically possible, but require unphysiological choices of metabolite levels. Mathematically, the feasible

metabolite profiles form a polytope in log-metabolite concentration space (called “M-polytope”). Metabolite

profiles outside this polytope would yield the wrong flux directions and can be discarded. If a flux distribution

leads to an empty M-polytope (or to a polytope outside the metabolite bounds), it is called thermo-physiologically

infeasible. If it leads to an empty M-polytope (no matter if metabolite bounds are considered), it is called

thermodynamically infeasible. Thus, by restricting the metabolite levels to physiological ranges, we can constrain

the possible flows to some feasible segments in flux space (“feasible flux patterns”). Flux patterns that imply

thermodynamic loops can be discarded.

Kinetic and stoichiometric metabolic models combine these assumptions in different ways and add optimality

assumptions. However, a pathway model is only meaningful if it reproduces, or at least appoximates, the behaviour

that the pathway would show as part of a living cell (or as part of a hypothetical detailed whole-cell model). First,

we may check whether our metabolic models contain everything we would need for a whole-cell model (i.e.,

whether we could obtain a meaningful cell model simply by extending the network to the entire cell). Two

main aspects that are still missing are density constraints (e.g. a bound on the weighted sums of all metabolite

and enzyme levels within cell compartments) and dilution (i.e. a stationary condition Nint v = λ c, where λ is

the cell growth rate). Second, if we assume that our pathway objective function (scoring fluxes, metabolite

levels, and enzyme levels within the pathway) is a proxy for (or “has been inherited from”) a whole-cell objective

(e.g. maximal cell growth), we need to understand how these two objectives are related. In the rest of this article,

we will focus on metabolic models. That is, we ignore dilution and consider pathway objectives that we pose as

a postulate (including effective enzyme costs, which increases with the enzyme levels). However, to make sense

of these models, we need to come back to these points, and we will do this in the second part of this article.

3 The metabolic state manifold

Before we get to optimality problems, let us first think about the metabolic states themselves, i.e. all possible

combinations of fluxes, metabolite levels, and enzyme levels. These feasible steady states – satisfying all physical

and physiological constrains described above – form a set in a high.dimensional space, the set on which our

optimality problems will be defined. Each point of this set is characterised by fluxes, metabolite concentrations,

and enzyme levels, and these state variables are coupled by rate laws, stationarity, thermodynamic laws, and

constrained by physiological bounds on concentrations. Mathematically, the set of states is a manifold in (v,x, e)-

space. How can we describe its shape?

Let us consider a simple example, a reversible reaction with fixed product concentration. As shown in Figure 2, the

possible states form a 2-dimensional manifold in a 3-dimensional (v, x, e)-space. Projecting this manifold onto the

(v, x)-plane yields two patches: one patch (red) for states with positive fluxes and high substate concentrations,

and another one (blue) for states with negative fluxes and low substrate concentrations. Each patch corresponds

to a possible flux direction and covers the points in metabolite and flux space that agree with this flux direction:

mathematically, it is the Cartesian product of two regions, a region in flux space and a region in metabolite space.

States outside these patches (“empty” patches shown in grey) would be thermodynamically infeasible, not only for

a specific rate law, but for any choice of rate laws that respect the thermodynamic sign constraints. The metabolic

state manifold itself is a curved surface in (v, x, e)-space. It consists of two sheets that are obtained by lifting the
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Figure 2: Metabolic state manifold of a
single enzymatic reaction with substrate
level c, enzyme level e, and reaction rate
v = e k(c). The product level is assumed
to be constant. The two patches in (v, x)
space and the corresponding sheets in
(v, x, e)-space are shown in blue and red.

patches in e-direction according to the enzyme demand function e(v, c) = v
r(c) (where r(c) is the specific reaction

rate). The mapping from a pair (v, x) to its enzyme demand is easy to compute, and the resulting enzyme levels

are guaranteed to be positive (because our reversible rate law, within a feasible patch, yields a reaction rate r

with the same sign as the flux v). In the state manifold, the enzyme level scales linearly with v, while the contour

lines (intersection lines with c − v planes) represent the curves v = e k(c) of the rate law (for a fixed value of

e). The cell can transit smoothly between all states on the manifold by changing its metabolite and enzyme

levels. However, to move from positive to negative fluxes, it needs to pass through a single point in (v, x)-space,

the chemical equilibrium state where the two patches touch each other. In (v, x, e)-space, this point corresponds

to a semi-infinite line (describing a zero flux with arbitrary enzyme levels) because in the equilibrium state, all

enzyme levels are possible. The enzyme demand function e(v, c), used for “lifting” is non-unique is this point3,

and the two sheets are smoothly connected by the line. Altogether, by knowing the flux directions, constructing

the flux-metabolite patches, and “lifting” them using the function e(v, c), we can systematically construct all

possible states. If we change the model parameters, the shape of the manifold changes as well. A change of the

equilibrium constant Keq would change the threshold concentration, which separates the patches in metabolite

space. A proportional change of the (forward and backward) kcat values would lead to a scaling in e-direction,

and changes of Michaelis-Menten constants would change the shape of the enzyme demand function.

For large metabolic networks, the state manifold is multidimensional and possibly complicated. Nevertheless,

we can construct them in the same way as for a single reaction. Of course, we encounter some additional

complications: (i) We need to consider a flux pattern (a vector describing all flux directions) instead of a single

flux sign, and we obtain polytopes instead of simple line segments in flux and metabolite space. (ii) Stationarity:

all internal metabolites must be mass-balanced. (iii) Flows may be constrained to a given flux benefit. Because of

the constraints (ii) and (iii), some additional patches may have to be discarded. (iv) The enzyme demand function

e(v, c) is multidimensional. (v) Furtermore, concentration ranges or fixed concentrations for metabolites may be

defined. Knowing all this, we can construct the state manifold for a given network (see Box 2 and Box 3): (i) We

enumerate all feasible flux patterns, representing a possible flux-metabolite patch (the Cartesian product of the

flux polytope and the metabolite polytope that belong to this flux pattern). (ii) Using the enzyme demand function

e(v, c), which is easily obtained from the rate laws, we can “lift” the patches into (v,x, e) space and obtain

the sheets of the manifold. Finally, with additional assumptions about our metabolic system, we can put more

constraints on the metabolic state. For example, a given linear flux benefit b(v) = b′ defines a linear hyperplane

in flux space, which intersects our metabolite manifold. Notably, the resulting lower-dimensional manifold may

not be path-connected, and may thus consist of separate disjoint pieces. Such flux benefit constraints are needed

to define flux cost minimisation problems such as “minimising enzyme cost at a given flux benefit”.

3If we additionally assume that cells switch off unnecessary enzymes (“enzyme removal assumption”), we could set the undetermined
enzyme levels to el = 0, and the mapping between states in (v,x)-space and (v,x, e)-space becomes bijective.
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Box 2: Feasible flux and metabolite states

A metabolic network can show a variety of flux/metabolite states. Geometrically, these states form a collection of polytopes,
each being the Cartesian product of a flux polytope and a metabolite polytope that comply with the same feasible force pattern
sign(θ) (see SI) and with box constraints (physiological ranges of fluxes and metabolite levels). A feasible thermodynamic
force pattern sign(θ) = sign(−∆µ) must be derivable from feasible chemical potentials µi = µ◦ + RT ln ci, where ln ci
must, again, be within physiological ranges. In practice, these polytopes can be constructed in the following way:

1. As a first step, we consider the possible metabolite profiles in log-metabolite space. Due to thermodynamic constraints
(which go hand in hand with thermodynamically feasible rate laws), each metabolite profile predetermines a set of flux
directions (flux pattern), and so the metabolite space is covered by convex polytopes, each related to one of the flux
patterns. The physiological concentration ranges define a feasible box in metabolite space. All M-polytopes outside
this box can be discarded. Below we will see that some other polytopes must be discarded too. Altogether, we obtain a
collection of feasible M-polytopes, defining the possible metabolite profiles and corresponding flux patterns.
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2. As a second step, we consider the possible flows in flux space. Each flux pattern corresponds to a segment in flux space
(i.e. an orthant or one of its lower-dimensional surfaces). Stationarity, and maybe a predefined linear flux benefit, define
a feasible subspace in flux space. Segments that are cut by this subspace are (stationarity)-feasible and contain a feasible
flux polytope (S-polytope or B-polytope).
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3. Now we combine these conditions. We consider all flux patterns that lead to feasible polytopes in both spaces (i.e. patterns
that allow for stationary flows in flux space and for thermo-physiologically feasible metabolite profiles in metabolite
space). If a flux pattern does not allow for a feasible flux polytope, the corresponding M-polytope in metabolite space
is discarded. If a flux pattern is not realisable by any M-polytope, the corresponding S-polytope in flux space is also
discarded. Eventually, we obtain a collection of feasible flux patterns (and corresponding pairs of S-polytopes and M-
polytopes) that satisfy all constraints. These flux patterns create a direct correspondence between the polytopes in flux
and metabolite space.

Despite its complicated shape, the state manifold has some simple properties: (i) All kinetically possible states

(i.e. points of the state manifold) are thermodynamically feasible (i.e. they correspnd to feasible points in flux-

metabolite space), and all thermodynamically feasible states can be kinetically realised. There is a unique mapping

between the two sets of states, except for states in which a reaction rate vanishes; in this case, any values of

the catalysing enzyme are possible. (ii) For a model with nr enzyme-catalysed reactions and next external

metabolites, the manifold is an nr + next-dimensional in almost all points. (iii) The manifold is differentiable in

each point (as long as the rate laws vl(c, e) themselves are differentiable); to see this, we simply note that we can

parameterise the manifold by c and e). (iv) The manifold is path-connected, i.e., any two points in the manifold

are linked by a path within the manifold. Starting in an initial state, the cell can gradually decrease all enzyme

levels and fluxes to zero, change the metabolite profile, and then increase the fluxes and enzyme levels to reach
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Box 3: The state manifold of kinetic models

The state manifold of a kinetic model is a curved manifold in (v,x, e)-space. To construct it from network
structure, rate laws, and constraints, we proceed in the steps shown below:

(1) Choose feasible flux pattern (2) Construct metabolite polytope (3) Construct flux polytope

(6) Iterate all previous steps

to obtain entire manifold

(4) Construct joint flux/metabolite 
polytope (patch)

(5) Lift patch to obtain
manifold sheet

We first determine all possible flux patterns. Each flux pattern is translated into a patch in flux-metabolite-
space. All combinations (v, c) in this patch can be realised with the chosen laws, and the necessary enzyme
levels are easy to determine. By computing the enzyme levels, we “lift” our patch into a sheet in (v,m, e)-
space. We can do this step by step.

the end state. Note that this path leads through a “dead” state (with zero metabolic fluxes); therefore, the proof

does not apply to the state manifold restricted to a constant flux benefit. For a detailed description of the state

manifold, see SI section S1.

4 Objective functions on the state manifold and effective objectives

We have learned that the set of feasible states can be screened systematically using metabolite levels and fluxes

as the free variables. We can now return to our initial question, the search for optimal cell states. Instead of

describing the cell as a whole, we will only consider a metabolic network or pathway. To define a metabolic

optimality problem, we choose a kinetic model describing our pathway (including physical and physiological

constraints), which defines a state manifold. Then, we choose an objective function on the state manifold, e.g. a

function of the form Eq. (1), or a simple function such as enzyme cost. Given our objective function, an optimal

steady state can be found by screening all combinations of stationary fluxes, metabolite levels, and enzyme levels,

and choosing the optimal states (v,x, e) that we’re looking for, the one that maximises our objective. A simple

example, the optimisation of a fitness Eq. (1) for a single chemical reaction, is shown in Figure 3.

An important aspect of these optimality problems are the constraints. First, there are the physical constraints on

state variables (e.g., the stationarity condition; the kinetic relationship between enzym levels, metabolite levels,

and fluxes; bounds on cell variables; or the constraints of a predefined flux benefit). These constraints determine

the shape of the metabolic state manifold or can be used to restrict it (e.g., by imposing a given flux distribution).

Second, in our optimality problems, we consider specific state variables called metabolic objectives, which can

either be optimised (then they are called mathematical objectives) or constrained. For example, we may minimise

the amount of required enzyme (one metabolic objective) at a fixed rate of biomass production (another metabolic

objective). If we constrain metabolic objectives, this means that we consider only a “feasible” subpart of the state

manifold. Below we shall consider a generalised version of this as a running example: a minimisation of enzyme
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Figure 3: Metabolic states and objective functions for a single-reaction model (compare Figure 2). (a) We consider
a reaction C↔ X with enzyme level e, substrate level c, constant product level x, and reversible Michaelis-Menten
rate law (all rate constants set to 1 for simplicity), which yields the enzyme demand function. (b) By screening the
metabolite concentrations and fluxes and solving for the enzyme demand, we obtain the set of feasible metabolic
states (c, v, e) (curved surface in panel 1, e on vertical axis, shown on natural logarithmic scale). The flux
benefit function (an increasing function of the flux, in arbitrary units) is shown on this manifold in colours (low:
red; high: blue). Panels 2 and 3 show the enzyme and metabolite cost (as benefit functions, with a minus sign).
The fitness function in panel 4 (flux benefit minus concentration costs) shows a local maximum in the center of
the blue region.

cost at a fixed flux benefit4. Starting from Eq. (1), this means: we replace the flux benefit term by a constraint,

and ignore the metabolite cost. But now we shall try to describe this in subspaces, i.e., to consider enzyme cost

as a direct function of fluxes and metabolite levels.

Instead of considering the state manifold as a whole, we may be interested in some of the variables only (either

v, c, or e). This means: we may want to “project” our state manifold, including the optimality problem, into

flux, metabolite. or enzyme space. In FBA, for example, we only consider fluxes, and ignore the other variables.

To “project” our metabolic states (in the manifold) onto flux states (on the FBA flux polytope), we need to

eleminate all other variables, but retain all relevant information (e.g., the fact that certain flows, effectively, imply

a high enzyme cost). To eliminate a type of variables (fluxes, metabolite levels, or enzyme levels), there are three

possibilities: we may (i) use dependencies in the model (e.g. computing enzyme levels directly from fluxes and

metabolite levels), (ii) treat some variables as fixed and given (e.g. the metabolic fluxes), or (iii) assume that some

(unknown) variables are optimised, given the other (known) variables. For example, to omit the enzyme levels

as function arguments, we can either (i) predefine their values, (ii) infer their values from the metabolite levels

and fluxes by using the rate law, or (iii) take the optimum value of the utility function across all possible choices

of enzyme levels. This means, to project our state manifold onto flux space, we could predefine all metabolite

levels (ii) and treat the enzyme levels as functions of fluxes and metabolite levels (i). Alternatively, we could treat

enzyme levels as a function of fluxes and metabolite levels (i) and assume that the metabolite are optimised,

given the fluxes, for minimal enzyme cost. In both cases, each flow v would implicitly determine the metabolite

and enzyme levels, and therefore an enzyme cost.

4There may be good reasons to compare metabolic states at equal flux benefits. First, to compare enzyme cost and flux benefit
on the same scale (as in Eq. (1)), they need to show the same measurement units. To make them comparable, relative weights need
to be found, which introduces some arbitrariness. Second, if flux benefit b(v) and enzyme cost qapp(c|v) scale linearly with the flow
v, this also holds for the fitness Eq. (1), and this fitness function will have its optima at v = 0 or v =∞. Instead of maximising this
function, we will rather optimise the cost/benefit ratio (which may have a local minimum) or minimise cost at a given benefit.
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Figure 4: Enzyme cost projected to flux and metabolite space. (a) Enzyme cost functions (schematic example).
From the enzymatic cost h(e(c,v)) as a function of fluxes and metabolite levels (yellow), we obtain projected
cost functions (“constrained” enzyme costs and “effective” enzyme costs). (b) Relations between the different
enzymatic cost functions shown in (a). Starting from the enzymatic cost h(e(c,v)) (bottom), constrained and
effective costs are derived by predefining or optimising some of the variables.

Let me state this more generally. We assume a utility function f(v, c, e) = b(v)− q(c)−h(e). By convention,

let is score fluxes by a benefit, while concentrations are scored by costs. From this objective function, we can

now derive apparent objectives that have the same physical meaning, but fewer function arguments. First, using

the physical constraints, we can project the objective function from the state manifold to one of the subspaces

(e.g. flux-metabolite space). We obtain the projected objective and the projected optimal point. Second, by

predefining some variables, we can consider the objective on a section of the state manifold. We obtain the

conditional objective and the conditional optimal point. And, third, we can replace the objective by a “effective

objective”, i.e. projecting the objective function into a subspace and choosing, for each projected point, the

optimum value along the projection line. This yields the sihouette objective and the sihouette optimal point.

By applying these possibilities in different combinations to fluxes, metabolite levels, or enzyme levels, we can

obtain a variety of different functions, all describing the same utility and the same model, but conditioned on

different assumptions.

Let us consider enzyme cost, our running example, and how it can be represented in flux or metabolite space.

With an enzyme cost function h(e) (linear) and an enzyme demand function e(c,v), we can systematically define

several enzymatic cost functions in metabolite (M) and flux (F) space (see Figure 4). If the enzyme demand

e(v, c) is obtained from thermo-feasible rate laws, it will be non-negative on the thermo-feasible patches. From

the enzyme cost h(e), we obtain a number of projected enzymatic cost functions with specific mathematical

properties (see Figure 4; the letters in the last column refer to the figure)

Enzymatic cost aenz(c,v) = h(e(c,v)) biconvex A

Flux-constrained enzymatic M-cost aenz(c|v) = aenz(c,v) convex B

Metabolite-constrained enzymatic F-cost aenz(v) = aenz(c,v) linear C

Flux-optimised enzymatic M-cost aenz(c| ∗ v) = minv a
enz(c,v) piecewise convex D

Metabolite-optimised enzymatic F-cost aenz(v| ∗ c) = minc a
enz(c,v) concave E

In contrast to the enzym cost h(e) itself, an enzymatic flux cost is an overhead cost: a function representing the

enzyme cost implied by the fluxes.

The projection approach can be applied to any objective function on the state manifold (i.e. any function of

fluxes, metabolite levels, and enzyme levels). For example, if we add a convex metabolite cost amet(ln c) to the

enzyme cost, we obtain a new “kinetic” cost function (representing, e.g., the relative cell volume occupied by

both types of compounds). Again, the kinetic cost can be projected into different subspaces:
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Kinetic cost akin(c,v) = aenz
c,v (c,v) + amet(c) biconvex A

Flux-constrained kinetic M-cost akin(c|v) = akin(c,v) convex B

Metabolite-constrained kinetic F-cost akin(v|c) = akin(c,v) linear with offset C

Flux-optimised kinetic M-cost akin(c| ∗ v) = minv a
kin(c,v) piecewise convex D

Metabolite-optimised kinetic F-cost akin(v| ∗ c) = minc a
kin(c,v) concave E

5 Conditions for optimal metabolic states

Starting from optimality problems on the state manifold, and defining conditional or effective objectives, we now

reobtain known optimality problems in flux, metabolite, and enzyme space. With further approximations, we

obtain methods such as FBA with flux minimisation or FBA with molecular crowding. In metabolic optimality

problems, we need to evaluate the terms from Eq. (1) (flux benefit, metabolite cost, enzyme cost), while restricting

the variables v, c, and e to feasible metabolic states, i.e. points on the state manifold (see again Figure 3). How

can we systematically screen this manifold? We know this already. Instead of treating fluxes, metabolite levels, and

enzyme levels as independent variables, we choose a subset of independent variables, e.g. fluxes and metabolite

levels. Based on the metabolic objective functions on the state manifold, we can formulate metabolic optimality

problems (like those shown in Figure 1 and Box 1). We can formulate them in different (yet equivalent) ways,

using different kinds of free variables and different choices of the objectives and constraints. With Eq. (1) as

a general fitness objective, different ways of screening metabolic states lead to different, equivalent optimality

problems.

Let us first consider the enzyme levels (and conserved moiety concentrations) as free variables. With steady-state

metabolite levels and fluxes given as functions cst(e) and vst(v), the fitness becomes a function

f(e) = g(e)− h(e), (6)

where g(e) = b(vst(e))−q(cst(e)). By maximising this function, we obtain an optimal metabolic state. However,

the functions cst(e) and vst(e) are not explicitly known, so the function f(e) can only be evaluated numerically,

and its general mathematical properties are unknown. It may have multiple local optima, which makes the

optimisation difficult. Luckily, there is another way to proceed: after writing the enzyme levels as functions of

fluxes and metabolite levels, the fitness function can be cast as

f(v, c) = b(v)− qapp(c|v) (7)

with qapp(c|v) = q(c) + h(e(v, c)), and can now be optimised with respect to v and c. For simplicity, let us

assume that the flux benefit b(v) is prescribed, so we consider again our running example, minimising enzyme cost

at a given flux benefit. This optimisation can be performed by combining a minimisation in enzyme space with

an optimisation in metabolite space [21], and we can do this in two different ways (see Figure 5). First, given

a predefined metabolite profile c, each flux profile v will have an enzyme demand e(v). The resulting enzyme

cost, written as a function aenz(v|c) = e(v, c) of the fluxes, is called the metabolite-conditioned enzymatic

F-cost. Next, by minimising this cost in flux space (at a fixed flux benefit) and treating c as variable again,

we obtain a cost qenz/v(c), a function on the metabolite polytope. This function is called the flux-optimised

enzymatic M-cost (see Figure 5). Second, we can also proceed in the opposite order: we fix a flow v and obtain

the (flow-conditioned) enzymatic cost in metabolite space, qenz(c|v); then, by minimising with respect to the

metabolite profiles c, we obtain the metabolite-optimised enzymatic F-cost aenz/c(v). The same goes for kinetic

(enzyme plus metabolite) cost functions.

If a feasible metabolic state performs better than (or equally good as) all feasible states in its neighbourhood,

it is called locally optimal. How can we find such locally optimal states? Let us consider again enzyme cost
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Figure 5: Search for optimal metabolic states in flux and metabolite space. (a) Optimising the M-optimised
enzymatic F-cost. For each flow v, the minimal cost is computed by optimising the metabolite levels (top).
The resulting cost function (a effective F-cost) is concave on the flux polytope (bottom). (b) Optimising the
F-optimised enzymatic M-cost. For each choice of the metabolite profile m, the minimal cost is computed by
optimising the fluxes (top). The resulting effective M-cost is piecewise convex on the flux polytope (bottom). (c)
Condition for locally optimal states: each of the vectors (flow and metabolite profile) must be a unique optimum
given the other one.

minimisation in flux and metabolite space at a given flux benefit. As before, we parametrise the metabolic

states by fluxes and logarithmic metabolite levels, i.e. we minimise the enzyme cost qenz(x,v) = h(e(c,v)) in

(v,x)-space at a given flux benefit. Any locally optimal state will satisfy a simple optimality condition (see

Figure 5). Since qeff(x,v) is biconvex, for a given flow v there can be only one optimal metabolite profile x, and

for each given x there can be only one optimum in v-direction. Therefore, for (vopt,xopt) to be a locally optimal

state, vopt must be the only favoured flow of xopt, and xopt must be the only favoured metabolite profile of vopt.

Or briefly: in a locally optimal state, metabolite profile and flow must uniquely favoure each other. Computing

the favoured flow of a given metabolite profile (by linear FCM), or the favoured metabolite profile of a given flow

(by ECM), is relatively easy. In particular, all uniquely favoured flows (obtained by linear FCM) must be corners

of the flux polytope, and the same holds for all locally optimal states.

If we formulate the optimality problems in different subspaces, as described above, what are the optimality

conditions, and what can we learn from them? Let us consider our two main cases, cost optimisation in

flux/metabolite space and a fitness optimisation in enzyme space.

First we consider the problem of optimising metabolite and enzyme levels for a minimal kinetic (metabo-

lite+enzyme) cost at a predefined flow v [11]. From the optimality condition for the metabolite profile c

0 = −∇c [q(c)− h(e(c,v))] , (8)

we obtain a condition for the cost derivatives (“prices”) in this optimal state (see Figure 6 (a) and SI section
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of metabolic control coefficients (dashed arrows).

S3.3)

qc = E>c E−1
e he. (9)

This equation, called “metabolite balance condition”, links the metabolite prices (in a vector qc) to the enzyme

prices (in a vector he). Each component of this vector equation refers to a metabolite and to the enzymes that

catalyse the surrounding reactions (the reactions in which this metabolite is directly involved). The two sets of

prices are linked by the unscaled metabolite elasticities Evl
ci = ∂vl/∂ci and enzyme elasticities Evlel = ∂vl/∂el.

The terms in this formula describe local quantities (i.e. the price of a single metabolite or enzyme, or relations Ec

between neighbouring variables). Notably, Eq. (9) also holds in a more general optimality problem: a problem in

which the flows are not predefined, but optimised along with the other variables? Above, we saw that the (flux-

optimised) enzymatic M-cost, in a region around its optimum point, is given by the (flux-constrained) enzymatic

M-cost (with fluxes constrained to the optimal flow). Therefore, Eq. (9) also holds if flows and metabolite profiles

are optimised together. What does the balance conditions tell us? If we multiply it by a differential concentration

change δc, we obtain a change of metabolite cost qc δc on the left, and a change h>e E−1
e Ec δc on the right.

In fact, we can read δe = E−1
e Ec δc as an equivalent enzyme change – a change that would have exactly the

same effect on the metabolic state as our change δc. This also means: if we apply an arbitrary, small metabolite

change δc and compensate all its effects on the fluxes by a change −δe, then the net fitness change is exactly

zero! This makes sense: since we start from an optimal state, the cell cannot further improve this state by varying

metabolite and enzyme levels, while keeping the fluxes unchanged.

Second, we consider an optimisation of enzyme levels e for a maximal fitness Eq. (1), with metabolic objective

terms b(vst(e)) (steady-state flux benefit), q(cst(e)) (steady-state metabolite cost), and h(e) (enzyme cost). The

optimality condition in enzyme space reads

0 = ∇e

[
b(vst(e))− q(cst(e))− h(e)

]
. (10)

As noted before, and as shown in Figure 1 (c), the three objective gradients must be balanced. With the flux

gain b?v = ∇vb, metabolite price qc = ∇q, control coefficient matrices CS and CV, and enzyme elasticity matrix
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Ee, we can rewrite this condition as a reaction balance condition (see Figure 6 (b) and SI section S3.4)

CV> b?v −CS>qc = E−1
e he. (11)

This optimality condition yields one equation for every enzyme. Again, to see what it means, may consider small

state variations: a variation of enzyme levels δe, leading to stationary changes δvst and δcst. Again, the balance

condition tells us any such variation would be fitness-neutral: the metabolic benefit on the left would be exactly

balanced by the enzyme cost on the right. The two balance conditions (11) and (9), in the form given here, and

are not fully local. Eq. (9) seems to be local, because it contains only variables linked to the metabolite perturbed

and its neighbouring elements. However, if moiety conservation were considered (which we ignored here for

simplicity), there would be connections, through conserved moieties, to distant parts of the network. Eq. (11) is

clearly non-local because it contains the control matrices CV and CS, which relate the local perturbation of a

reaction rate to steady-state changes of concentration and fluxes anywhere in the network. To know these control

coefficients, we need to consider the entire modes at once, and know its optimal state. This makes it hard to

apply to a single reaction or pathway inside a larger, possibly unknown system.

6 Modelling the compromises in cells

If different metabolic objectives are in conflict, optimal compromises need to be found. Mathematically, trade-offs

can be described in different ways. First, we can combine different metabolic objectives in a single objective. In

Eq. (1), for example, we combine flux benefit, metabolite cost, and enzyme cost by taking their difference. We

may also optimise a ratio (e.g., the enzyme cost per flux benefit). Second, we may optimise one metabolic objective

while constraining the others: e.g. we maximise flux benefit at a fixed enzyme cost, or minimise enzyme cost at a

fixed flux benefit. This can be used for a stepwise or nested “layered” optimisation of different objectives. Third,

we may perform multi-objective optimisation. To determine a set of Pareto-optimal solutions, called Pareto front,

we score fluxes, metabolite levels, and enzyme levels separately and search for potentially optimal compromises. A

solution is optimal if none of the objectives can be further improved without compromising any other objectives.

In other words, there is no other solution that scores better in some objectives, and equally well in all others. To

generate point on the Pareto front, one may either optimise many linear combinations of the different objectives.

In a problem with two objectives, one may also constrain one of the objectives to different values and obtimise

the other. Interestingly, no matter how trade-offs are described, the criterion for optimal states is always the

same: some convex combination of the three cost gradients must vanish. In a single-objective optimisation, each

combination of the objectives (i.e. each choice of the numerical weights) yields a different solution. Together,

these solutions cover a region in enzyme space, and this is also exactly the region of Pareto-optimal points.

Moreover, by formulating the problem with fluxes and metabolite levels as the free variables, we would get to the

same solutions. Thus apparently, no matter how we formulate the optimality problem mathematically, we always

obtain the same result!

We saw that compromises between objectives can be modelled in various ways: by combining them into one

objective, by optimising one objective while constraining the others, or by multi-objective optimisation. We saw

examples of this in the paper. If we associate lower bounds (on metabolic objectives) with benefits and upper

bounds with costs, these approaches are closely related, not only in what they assume about cells, but also

mathematically: all of them lead to optimality conditions of the same form! If a vector x contains the cell

variables to be optimised (e.g., enzyme levels) and if f1(x), f2(x), ... are our metabolic objectives (e.g., enzyme

cost, metabolite cost, and flux benefit), the optimality conditions have the form

0 =
∑
i

ϕi∇xfi(x). (12)
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All objectives can be improved:

not Pareto−optimal!

Improvment of an objective
only at the expense of others

Pareto−optimal!

Figure 7: Mathematical ways to describe trade-offs between optimality objectives (in the example, for an optimi-
sation in enzyme space). Like in Figure 2, we consider a metabolic model with flux benefit, metabolite cost, and
enzyme cost, but we formulate the costs as metabolite “benefits” (i.e. negative metabolite costs) and enzyme
“benefits” (i.e. negative enzyme costs). (a) Optimisation of a single combined objective, the sum of all benefit
terms. In the optimal state, the three gradients must cancel each other. If the benefit terms are weighted in
the sum, the same weight appear in the sum of gradients. (b) Constrained optimisation. In the example, we
maximise flux benefit, while imposing lower bounds on metabolite and enzyme benefit. Again, in the optimal state
a weighted sum of the gradients must vanish. Now, some of the prefactors (those that correspond to constraints)
are Lagrange multipliers. (c) Multi-objective optimisation. Again, andA optimal compromise (Pareto-optimal
state) requires a weighted sum of gradients to be balanced (i.e. to vanish). To illustrate this, a non-optimal
state is shown on the right: since the gradients point to similar directions, a small movement in enzyme space
could improve some objectives without compromising the others. In the Pareto-optimal state on the left, this is
impossible.

This equation assumes that our cell variables x can be freely varied; if they need to respect constraints (e.g.,

positivity constraints; or if x represents interdependent variables such as fluxes, concentrations, and enzyme levels),

there will be extra terms with Lagrange multipliers. The weight ϕi can have different meanings, depending on

how compromises are described mathematically. In a single objective problem with f(x) =
∑
i ϕi fi(x), the

weights ϕi are simply the prefactors in the objective function. In we optimise one objective while constraining

the others (e.g., optimising f1, with bounds on f2, .., fn), we can set ϕ1 = 1 while all other weights ϕi are

Lagrange multipliers (with signs depending on the type of constraints (upper and lower bounds) and optimisation

(maximisation or minimisation of f1), or zero values for inactive constraints). In a multi-objective optimisation,

the optimality condition has again the same form, with different values of the ϕi for different Pareto-optimal

states (proof see SI section S3.2).

To understand what the optimality conditions mean geometrically, let us return to Figure 1 (c) and consider the

balance of gradients in the optimal state. For clarity, we revert the signs of all cost terms and describe them

as benefit terms. Again we consider the three ways to describe compromises. If a combined benefit function is

maximised, a weighted sum of the benefit cost gradients, with the same weights as in the combined benefit, must

vanish (see Figure 7). If we fix two objectives and optimise the third, a weighted sum of the gradients needs to

vanish, but now one of the prefactors is 1, while the others are given by Lagrange multipliers. And also if we

apply multi-objective optimality, a weighted sum of the gradients has to vanish [22] (proof in SI S3.2). Thus,

whether we treat our metabolic objectives as mathematical objectives, as constraints, or in a multi-objective

setting, we always obtain the same optimality criterion: a weighted sum of the three benefit gradients must

vanish. If metabolic objectives refer to costs or upper bounds (instead of benefits or lower bounds), the weights

for their gradient will have minus signs. This condition can be extended to any number of objectives, and to

additional constraints between variables, e.g. if we consider separate cost terms for different enzyme fractions (in

different cell compartments or membranes). Thus, due to their common optimality conditions, we can say that

all the different optimality problems are equivalent!

For convenience, we can remove the prefactors ϕi in Eq. (1) by rescaling our objective functions. Originally,
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the ϕi are either predefined (in single-objective optimisation), or they emerge in the optimal state (as Lagrange

multipliers in constrained optimisation, or in multi-objective problems). However, in each specific solution (based

on given objectives b, q, and h), the prefactors ϕ will have specific numerical values, and if we are interested

only in this solution, we can replace our problem by a single-objective “proxy” problem with effective objectives

b′ = ϕb b, q
′ = ϕq q. This new problem will have the same optimality condition as before, but with prefactors ϕi

equal to 1, which can be ignored. Two details should be noted. First, the objectives in our proxy problem will

be differently scaled for different solutions of our original problem. For example, if we start from a multi-criterio

problem, then the prefactors ϕ, and thus the objectives of the proxy problem will be differently scaled in every

Pareto-optimal point. Second, in our original problem, ϕb will typically be positive (for benefits, described by

lower bounds in a maximisation problem) and ϕq and h will typically be negative (for cost, described be upper

bounds in a maximisation problem). Accordingly, benefit terms in the resulting proxy problem will have positive

signs, and cost terms will have negative signs. This justfies our previous, simplified proxy problems and shows

that their optimality conditions hold generally, no matter how compromises are described.

7 Discussion

To unify different metabolic modelling approaches based on optimality principles, I considered general optimality

problems on the metabolic state manifold. The resulting framework clarifies how modelling approaches (such

FBA, RBA, kinetic models, and simplified whole-cell models) are logically related and how they can be interfaced

in modular or layered modelling. Enzyme levels were generally used as a synonym for enzyme activities. While

allosteric regulation can be included in the models5, transcriptional regulation were not considered, because the

aim here was to find which enzyme levels would be profitable for a cell, and not how these profitable enzyme

levels are mechanistically realised. Nevertheless, if optimality calculations reveal quantitative relationships between

metabolite levels and enzyme levels across optimal states, one could try to approximate these relationships by

functions eopt
l = eopt

l (copt) and claim that these would be suitable gene regulation functions for the expression

of enzymes.

The state manifold is not only practical for optimisation, but is also interesting itself, in order to better understand

the sampling of metabolic states. The concept of a state manifold resembles the way state variables (such as

temperature, pressure, and volume of a gas) are treated in physics. In classical thermodynamics, we consider a

number of variables (e.g., volume, energy, and entropy of an amount of gas) that are related by a state equation,

and other variables (e.g., pressure and temperature) that can be computed from them by taking derivatives. Since

all these variables depend on each other, we obtain a manifold of possible states (two-dimensional, in this case).

There is no “natural” choice of basic variables: in one case, it may be practical to use volume and energy as basic

variables (while all others will be dependent on them); in another case, for example, we may prefer pressure and

temperature. In metabolic models, we encounter a similar situation: in some cases, we parameterise metabolic

states by enzyme levels, in others by metabolite levels and fluxes – but these are just different ways to refer to

points on the state manifold.

From our general optimality problems on the state manifold, we can derive a variety of specific optimality problems.

For example, the fitness Eq. (1), originally formulated as a function of enzyme levels, metabolite levels, and

fluxes, can be optimised with different choices of the free variables. Each formulation has its advantages and

disadvantages. If enzyme levels are treated as free variables, they can easily be constrained (e.g. by a bound

on the sum of all enzyme levels). A layered flux/metabolite optimisation has its own advantages. First, it can

be split into separate, layered optimality problems, a concave problem for fluxes [16] and a convex problem for

5Allosteric and post-translational regulation of enzymes can be generally considered costly, and would be excluded by optimality
approaches that only optimise state variables, as considered here. The cost of regulation is maybe balanced by the benefits of
stabilising metaboic states or making them better controllable (through changes in the Jacobian matrix). This could be included in
optimality approaches as another objective in the future.
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metabolite levels [11], that are easier to study and solve than general non-convex problems. Second, we can

easily predefine or constrain the fluxes, the main functional target of metabolism. By running optimisation with

predefined fluxes, we can even define plausible flux cost functions a(v) to be used in flux analysis. Importantly,

this approach provides a theoretical justification for flux cost functions and for enzyme constraints used in existing

methods, e.g. FBA with molecular crowding.

If a cell process (e.g. a reaction flux) causes indirect costs (e.g. costs for enzyme maintenance), and if a model

describes them as direct costs, I call these costs “overhead costs”. The enzymatic flux cost is a good example:

it describes the enzyme investment needed to realise certain fluxes, but is written as a function of the fluxes

themselves, i.e. as a function in flux space. The fact that it does not arise within a reaction, but elsewhere in the

cell (e.g. in enzyme production, or because enzymes occupy space, impinging on other growth-relevant processes)

is hidden by the description as flux costs. We can rougly distinguish between two types of overhead costs: costs

that arise from the causal conditions of a process (e.g. the cost of enzyme and metabolite levels required to realise

a flux), and costs that arise from the causal consequences of a process (e.g. the cost of a toxic compound that

accumulates due to a flux). However, since cellular networks contain cycles and feedback loops, this distinction

is not very strict.

We can now classify optimality problems. Many of them are related, and some will define the same optimal states.

Related problems may be fully equivalent or may share similarities at different levels. First, two problems may

use the same kinetic model and objective function, but treat different cell variables as the free variables (e.g. a

direct enzyme optimisation and a flux optimisation with kinetic flux cost). Regarding their biological assumptions,

such problems are completely equivalent. Second, two problems may assume the same metabolic objectives, but

represent them either as mathematical objectives or as constraints (e.g., minimising a cost at a fixed benefit

versus maximising this benefit at a limited cost). Third, two problems may describe different, but overlapping

biological systems (e.g. a model of a metabolic pathway versus a cell model containing this pathway) and may

therefore employ different fitness objectives (maximal enzyme-specific pathway flux versus maximal cell growth)

that are equivalent “in disguise” (i.e. leading to the same optimal state in the pathway). Fourth, two problems

may rely on different modelling paradigms (e.g. constraint-based versus kinetic models), but employ equivalent

objectives (possibly, again in disguise), leading to the same metabolic state. Finally, two optimality problems may

describe pathways in the same cell, under the same growth conditions, and our aim is to compare and combine

their results.

The different formulations of an optimality model represent different assumptions about the “freedom” of cells to

vary some cellular quantities – i.e. whether quantities are assumed to be fixed or whether they could be changed

at the expense others. For example, when describing a cellular trade-off between biomass production and enzyme

demand, we may assume that the cell can devote a fixed protein budget to metabolism. In any case, we may

assume that cells can shift resources between metabolic pathways; so for a single pathway, there will be a way to

increase the enzyme amount, at a cost that is not an actual enzyme cost, but a decreased metabolic performance

in other pathways due to the reallocation of enzyme, represented by an “overhead” enzyme cost! But we may

also argue that cells – if biomass production were really important – could always find ways to direct other

protein resources (e.g., resources currently spent on ribosomes) towards metabolism if this increases the biomass

production rate. However, increasing enzyme levels will eventually hit some limit: eventually, there will be an

optimal compromise between all pathways, including protein translation, and that the metabolic enzyme budget

in this compromise state defines an enzyme budget to be fixed for our calculation. Multi-objective optimisation,

finally, does not constrain a single objective, but all of them together. In this way, it can describe a set of

solutions that may be optimal for cells under different external conditions. Formally, each of these situations can

also be described as a situation in which some objectives are fixed, giving rise to a single-objective optimality

problem with a specific choice of constraints or weights for the metabolic objectives. All this shows that our choice

between mathematical objectives and constraints is not a matter of physics or physiology: it is a pure modelling
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assumption, a choice between hypothetical scenarios that we attribute to the cell. Like in our mathematical

formulae, constraints can be replaced by cost terms, or cost terms can be replaced by constraints, depending on

how we would like to frame our assumptions.

Here we assumed that cells realise optimal metabolic states, with simple criteria for optimality. Notably, the theory

does not claim optimality, nor does it prove or disprove optimality in real cells. Instead, it poses optimality as an

assumption and shows some of the consequences: how optimal metabolic behaviour, according to our optimality

criteria, would shape the state of cells. Optimality assumptions, often tacitly made by biologists, can be explicitly

studied, and their consequences can be tested by models. We can simulate how well organisms function and under

which selection pressures and constraints they evolve. In fact cells’ behaviour often appears to be non-optimal.

For cells that have not been evolutionarily adaptated to laboratory conditions or to experimental perturbations like

gene knockouts, this is not surprising. There are different ways to model such “non-optimal” cell states. On the

one hand, we can abandon the optimality assumption, describe enzyme profiles as non-optimal, and quantify the

“loss” caused by non-optimality. For example, phenomena such as preemptive expression or variable expression

levels in cell populations (as observed in bacterial persistence), may be adaptations to complex environments

with varying nutrient supplies or rare, severe challenges by antibiotics. To describe such a behaviour as beneficial,

we may modify our optimality problems and include adaptations to uncertain future challenges as side objectives.

Then, apparently wasteful enzyme profiles (i.e. wasteful if only the cell’s current environment is considered) can

be actually economical as bet-hedging strategies (i.e. considering possible future challenges).

The aim proposed in the introduction – a general theory of optimal metabolic states – has been achieved, but

only to a certain extent. We have a theory that works for a single pathway (up to the size of the entire metabolic

network). But what if we want to model an entire cell? Or, at least, if we’d like to take into account that our

pathway is surrounded to other pathways, and that the true fitness objective (e.g., biomass production) is not

realised inside our pathway, but elsewhere in the network? We encountered two problems: First, we obtained an

optimality condition , but this condition contains the metabolic control coefficients, which relate a reaction in

question to all other reactions and metabolites in the system. Since our system of interest is the entire cell, we

would need an entire, detailed cell model to use this condition. If we consider a single pathway model, important

effects may be missing. What we need to do, for a meaningful theory (that applies to individual pathways, but

effectively includes all fitness effects outside the pathway), is to find similar balance equations that are local, i.e. in

which all fitness effects are described by local variables. Second, in the state manifold, it was still difficult to

consider density constraints and dilution, which are important in whole-cell models (with a constrained protein

budget or general denisty constraints). To solve both problems, I propose to take a closer look at the Lagrange

multipliers appearing the in the optimality problems, and to interpret them as “economic values”, associated with

and dual to the physical variables in our model. I will do this in the second part of this article.
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