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S1 Mathematical notation

Most formulae are written in matrix notation, with vectors, matrices, and tensors written in bold font. Mathemat-

ical symbols are listed in Table S1. For tensor products, I use the following notation: products Y i
mn =

∑

l A
i
lB

l
mn

are written Y = A · B; product X i
mn =

∑

pq A
i
pqB

p∗
mCq

n are written as X = A [B ⊗ C]. The symbol ⊗ de-

notes the Kronecker product, the star ∗ denotes the complex conjugate, and the dagger † denotes the adjoint,

i.e. the conjugate transpose. Oscillations are described as the real parts of complex exponentials, for instance,

a(t) = Re[ã eiωt] = |ã| cos(ωt)+ϕ(ã), where ϕ(z) is the angle of a complex number z. Elasticities and response

coefficients are used in their unscaled form throughout the text.

Symbol Unit Name
ci mM Concentration
vl mM/s Reaction rate
vl(c) mM/s Reaction rate law
ul mM Enzyme level
xj External parameter
pm System parameter (enzyme level or external)
y System variable (concentration, reaction rate, or benefit function)
si mM Steady state concentration
jl mM/s Steady state flux (reaction rate)
f(u) D Fitness function
g(u) = z(y) D Benefit function
h(u) D Cost function
zv D/(mM/s) Flux demand
ỹl D Periodic enzyme gain
ω s−1 Circular frequency
I Identity matrix

Table S1: Mathematical symbols used. The physical units of some quantities depend on the case. The unit D
(Darwin) is the hypothetical unit of the fitness function. Note that all MCA coefficients (elasticities, response
and control coefficients) are used in their unscaled form.

S2 Dynamics of oscillations in metabolism: propagating perturbations

Static parameter changes can shift the stable reference state of a kinetic model. Periodic parameter changes will

drive forced oscillations and, as a second-order effect, can shift the average state. In this section, I show how to

compute these forced oscillations in biochemical systems in a second-order approximation. In section S5, I will

demonstrate the approach step by step with simple example models. Here I recall general formulae from [1, 2, 3],
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Steady states
Ry

p = (Ryl

pm
) 1st order response coefficients (for state variable y)

Ry
pp = (Ryl

pmpn
) 2nd order response tensor (“synergy tensor”)

Cs, Cj Control coefficients (for concentrations and fluxes)
Ec = (Eli) Unscaled elasticity matrix
Ecc, Ecp, Epc, Epp 2nd order elasticity tensors

Periodic states
Cs(ω), Cj(ω) Spectral control coefficients (for concentrations and fluxes)

R̃
ỹ
p̃(ω) 1st order spectral response matrix

R̃
y
p̃p̃(ω), R̃

ỹ
p̃p̃(ω) 2nd order spectral response tensor (frequencies 0 and 2ω) (periodic synergy tensor)

R
y
p̃p̃(ω), R

ỹ
p̃p̃(ω) 2nd order periodic response tensor (frequencies 0 and 2ω) (periodic synergy tensor)

Table S2: Symbols for metabolic control analysis.

which equally apply to simple and complicated models. The paragraphs describe how rate perturbations in a

single reaction can be described by spectral elasticities; how biochemical systems respond to small perturbations -

which may be stationary or periodic - and how the response can be computed by response coefficients; how static,

spectral, and periodic response coefficients are computed; and how periodic changes in transcript and enzyme

levels are related to each other.

S2.1 Expansion of peridiodic rates by spectral elasticities

The unscaled reaction elasticities are defined as the derivatives of the rate laws vk(c,p):

Evk
cm =

∂rk
∂cm

Evk
pm

=
∂rk
∂pm

Evk
cmcn =

∂2rk
∂cm∂cn

Evk
cmpn

=
∂2rk

∂cm∂pn
Evk

pmpn
=

∂2rk
∂pm∂pn

. (S1)

They can be used to Taylor-expanded a rate law around a given reference state. In periodic metabolic states

with cosine oscillations (frequency ω) in the reactant and enzyme levels, the rate will oscillate as well, and in a

second-order approximation, the shift and amplitude can be determined from the periodic elasticities (see [3] and

Figure S1).

I will illustrate this with a simple example. In model M1 in the article, a cosine-wave profile, our ansatz for

enzyme profiles, provides an exact optimal solution. However, this only holds because the mass-action rate law

is linear in both u and x. Typical enzymatic rate laws are nonlinear in x, so a harmonic substrate profiles will

not induce harmonic optimal enzyme profiles. However, for small perturbations, they can be approximated by

harmonic profiles. To do so, we expand the rate laws around the reference state: a rate change ∆v, caused by

deviations ∆u and ∆x, is approximated by

∆v ≈ Ex ∆x+ Eu ∆u+
1

2
Exx ∆x2 + Eux ∆u∆x (S2)

with the unscaled elasticities Ex = ∂r
∂x , Eu = ∂r

∂u = v
u , Exx = ∂2r

∂x2 , Eux = ∂2r
∂u∂x = 1

u Ex. The second-order

elasticity Euu vanishes because the enzyme level is a linear prefactor in the rate law. We consider only harmonic
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Figure S1: Periodic elasticities. A reaction rate (y-axis) depends on the substrate level (x-axis), as described by
the rate law (black curve). Harmonic oscillation of the substrate level (blue curve, with y-axis representing time)
lead to an oscillating rate (brown curve, time on x-axis). The minimal and maximal concentrations translate
into minimal and maximal rates (dashed lines), while the average concentration translates into the median rate
(dotted line), which differs from the average rate (brown straight line). This shows that oscillations around a
constant substrate level can shift the average flux. The flux shift and amplitude, in a second-order aproximation,
can be determined from the metabolic amplitude with the help of periodic elasticities.

enzyme profiles. With harmonic ryhthms of u and x, only the last term in Eq. (S2) will matter for periodic enzyme

adaptions. The term resembles the mass-action rate law in model M1 in the article, with the mixed elasticity

Eux = 1
u Ex replacing the rate constant k, and the average rate shift due to enzyme adaption reads approximately

∆〈v〉t ≈ Re(
1

2
Eux ũ x̃) =

1

2
Eux|ũ| |x̃| cos(φ). (S3)

The prefactor Eũx̃ = 1
2Eux = Ex

2u , called the periodic second-order elasticity, relates the flux shift to the ampli-

tudes. If we consider reactions with multiple substrates and products, the optimal enzyme rhythm will depend on

all reactant rhythms together. Instead of Eq. (S3), we obtain

∆〈v〉t ≈
1

2
Re(ũ Eux x̃) (S4)

where x̃ is the vector of reactant amplitudes and Eũx̃ = 1
2Eux

= 1
2uEx is the row vector of periodic enzyme-

reactant elasticities. As an example, consider a reaction X ⇌ X with elasticities EX > 0 and EY ≤ 0. With

given amplitudes ã and b̃, the average flux shift caused by enzyme adaption reads ∆〈v〉t = Re[ ũ
2 u (EX x̃+EX ỹ)].

If the enzyme amplitude is fixed, the enzyme must be in phase with EX x̃ + EY ỹ to achieve a maximal flux. If

the reaction is irreversible (EY = 0), the enzyme must be in phase with X; if it is reversible, Y will peak after X

(phase shift 0 < φ < π) and the enzyme will peak before X (see Figure 2 (d)).

S2.2 How biochemical systems respond to parameter perturbations

The metabolite levels in a kinetic model follow the balance equations

dc(t)

dt
= N v (c(t),p) (S5)
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with the stoichiometric matrix N (for internal metabolites), rate laws v(c,p), and parameter vector p. To

account for metabolite dilution in growing cells, we can subtract a term κ c on the right hand side, where κ

is the cell growth rate in s−1, The parameters can comprise enzyme activities, enzyme kinetic parameters, and

external metabolite levels. I assume that all vectors p in a region Ωp in parameter space lead to stable steady

states, with concentrations s(p) satisfying the steady state equation 0 = Nr(s(p),p). We combine the stationary

concentration vector c = s(p) with the stationary flux vector v(p) = r(s(p),p) in a state vector y(p) =
(

s(p)
j(p)

)

.

Next, we choose a parameter set p̄ inside Ωp, which defines our reference state. Static parameter changes ∆p

will shift the state, and the new state vector y can be Taylor-expanded around p̄ into a series

y(p̄+∆p) = y(p̄) +Ry
p∆p+

1

2
Ry

pp(∆p⊗∆p) + ... (S6)

The expansion coefficients (“metabolic response coefficients”) are collected in a first-order response matrixRy
p and

a second-order response tensor (or “synergy tensor”) Ry
pp. Both can be computed directly from the stoichiometric

matrix and from the reaction elasticities (see section S2.3).

Next, we consider small harmonic parameter variations p(t) = p̄+Re[p̃ eiωt]. The complex amplitudes p̃m describe

the amplitudes and phases of individual parameters. The oscillations lead to forced oscillations of concentrations

and fluxes: asymptotically (i.e., if initial conditions are defined for times t → −∞), the state vector y(t) changes

periodically and can be expanded [3] as

y(t; p̄, p̃, ω) ≈ y(p̄) + Re
[

R
ỹ
p̃ p̃ eiωt

]

+
1

2
R

y
p̃p̃(p̃⊗ p̃∗) +

1

2
Re
[

R
ỹ
p̃p̃

(

p̃⊗ p̃
)

ei2ωt
]

. (S7)

In this second-order approximation, the parameter oscillations at frequency ω evoke state variable oscillations at

frequencies ω (1st order), 0 (2nd order), and 2ω (2nd order). The periodic response coefficients, in the matrix

R
ỹ
p̃ and in the tensors Ry

p̃p̃, and R
ỹ
p̃p̃, are complex-valued and depend on the driving frequency ω. Formulae for

their calculation are given in section S2.3. With Eq. (S7), the time average of the state vector reads

〈y〉t ≈ y(p̄) +
1

2
R

y
p̃p̃(p̃⊗ p̃∗). (S8)

Equation (S8) shows that parameter oscillations can shift the time-averaged metabolic state and that this shift is

a second-order effect. Since the system equations (S5) are time-shift invariant, the first-order response coefficients

R̃
ỹ
p̃ can only couple perturbations and effects of the same frequency. Therefore, oscillating parameters (with

frequency ω 6= 0) have no first-order effect on the time-average metabolic behaviour (at frequency ω = 0). If

we consider a single variable y (e.g., a metabolite level c, a reaction rate v, or the metabolic benefit function

g = z(y)), we can write Eqs (S6) and (S8) as

y(p̄+∆p) ≈ y(p̄) +Ry
p∆p+

1

2
∆p̃TRy

pp∆p̃

〈y〉t ≈ y(p̄) +
1

2
p̃†Ry

p̃p̃(ω)p̃ (S9)

with a row vector Ry
p, a symmetric matrix Ry

pp, and a Hermitian matrix Ry
p̃p̃(ω). These can be directly computed

from network structure and elasticities in steady state.

5



S2.3 Formulae for static, spectral, and periodic response coefficients

How can we compute the static and periodic response coefficients for a given model? To account for potential

conservation relations between metabolite concentrations [4], we split the stoichiometric matrix N into a product

N = LNR, where NR consists of linearly independent rows of N.

Static response coefficients With the steady state variables given as functions yi(p) =
(

s(p)
j(p)

)

of the system

parameters, the static response coefficients [1, 2] are defined as

Ryl

pm
=

∂yl
∂pm

, Ryl

pmpn
=

∂2yl
∂pm∂pn

. (S10)

With the control coefficient matrices [4]

Cs = −L (NREcL)
−1NR, Cj = Ec Cs + I, (S11)

they can be written as [2]

Ry
p = Cy Ep

Ry
pp = Cy · Γ

where Γ = Ecc(R
s ⊗Rs) +Ecp[R

s ⊗ I] +Epc[I⊗Rs] +Epp. (S12)

Spectral response coefficients The spectral response coefficients, introduced in [3], assume harmonic parame-

ter perturbations and relate their Fourier components to the Fourier components of the responing state variables.

With the spectral control coefficient matrices

Cs(ω) = −L(NREcL− iωI)−1NR

Cj(ω) = Ec Cs(ω) + I, (S13)

they can be written as

R̃
ỹ
p̃(ω) = Cy(ω) Ep

R̃
y
p̃p̃(ω) =

1√
2π

Cy(0) · Γ(ω,−ω)

R̃
ỹ
p̃p̃(ω) =

1√
2π

Cy(2ω) · Γ(ω, ω)

where Γ(α, β) = Ecc[R̃
s̃
p̃(α) ⊗ R̃s̃

p̃(β)] +Ecp[R̃
s̃
p̃(α) ⊗ I] +Epc[I⊗ R̃s̃

p̃(β)] +Epp. (S14)

The first-order spectral response coefficients (in the matrix R̃ỹ
p̃(ω)) connect perturbations and effects at the same

frequency ω. The second-order spectral response coefficients (in the tensors Ry
p̃p̃(ω) and R

ỹ
p̃p̃(ω)) correspond to

effects at frequencies 0 and 2ω, respectively. For more details, see [3].

Periodic response coefficients In this article, oscillations are not described by complex exponentials, but by

their real parts p(t) = p̄ + Re(p̃ eiωt). To expand these in Eqs (S8) and (S9), we need a rescaled version the

spectral response coefficients, called periodic response coefficients. The first-order coefficients are identical, but
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for the second order, we obtain a prefactor of
√
2π
2 (proof in section S6.2), and therefore

R
y
p̃p̃(ω) =

√
2π

2
R̃

y
p̃p̃(ω), R

ỹ
p̃p̃(ω) =

√
2π

2
R̃

ỹ
p̃p̃(ω). (S15)

These are the coefficients needed in Eqs (S8) and (S9). For slow oscillations (ω ≈ 0), the second-order periodic

response coefficients converge to half of the second-order static response coefficients, that is,

R
y
p̃(ω = 0) = 0 (S16)

R
y
p̃p̃(ω = 0) =

1

2
Ry

pp (S17)

R
ỹ
p̃p̃(ω = 0) =

1

2
Ry

pp (S18)

For fast oscillations (ω → ∞), they become

R
y
p̃p̃(ω) ≈

1

2
Cy Epp. (S19)

S2.4 Phase shifts between mRNA and enzyme levels

Periodic enzyme levels can be realised by periodic gene expression. However, when comparing predicted optimal

enzyme rhythms to expression data, we need to consider the time lag between mRNA and protein peaks. Moreover,

mRNA profiles with high relative amplitudes may lead to moderate or negligible enzyme oscillations. To model

this, we assume that protein production is proportional to the current mRNA level and that proteins are degraded

or diluted linearly. The protein level p(t) will follow the differential equation

dp(t)

dt
= αm(t)− κm(t) (S20)

with mRNA concentration m(t), a rate constant α for protein production, and an effective rate constant κ for

protein degradation, which may entail enzyme dilution in growing cells; the rate constants may differ between

proteins. According to the model, an harmonic mRNA profile m(t) = m̄ + Re(m̃eiωt) leads to a protein profile

p(t) = p̄+ Re(p̃ eiωt) with curve parameters

p̄ =
α

κ
m̄, p̃ =

α

κ+ iω
m̃. (S21)

In turn, to obtain a predefined protein profile p(t) = p̄+ Re(p̃ eiωt), we need a periodic mRNA profile with

m̄ =
κ

α
p̄, m̃ =

κ+ iω

α
p̃. (S22)

To avoid negative mRNA levels, these values need to satify m̃ ≤ m̄, and accordingly, protein profiles must satify

the inequality |p̃| ≤ (1 + ω/κ)−1/2 |p̄|. The phase shift between mRNA peak and protein peak is tan(ω/κ); for

ω ≈ 0, mRNA and protein are in phase; for high frequencies, the protein peaks after the mRNA with a phase shift

of π/2. Proteins with a slow turnover (small κ) show large phase shifts, whereas if oscillations are slow compared

to protein turnover (ω ≪ κ), the phase shifts are negligible.
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S3 Economics of oscillations in metabolism: optimal enzyme profiles

To derive formulae for optimal enzyme profiles in the presence of external perturbations, we write the fitness as

a function of the external parameters xj and enzyme levels ul and compute its first and second derivatives.

Kinetic

model
metabolic

Gain function
Loss function

metabolic
state

Optimal static

Optimise static
enzyme profile

Compute derivatives

Periodic
response
coefficients

Fitness−stable?
Compute ..

Not fitness−stable?
Compute ...

response
Passive
response

Spontaneous
oscillation
Enz, met, fluxEnz, met, flux

Adaptive

Met + flux

Figure S2:

S3.1 Fitness under static perturbations

With fixed values for the external parameters xj and enzyme levels ul, and solving for a steady state, we obtain a

reference state with state vector y(x,u) =
(

s(x,u)
j(x,u)

)

. Let (x̄, ū) denote a reference parameter set. For parameter

sets
(

x
u

)

=
(

x̄
ū

)

+
(

∆x
∆u

)

, the expansion (S6) for changes ∆x, ∆u, and ∆y reads

∆y ≈ (Ry
x Ry

u)

(

∆x

∆u

)

+
1

2

(

Ry
xx Ry

xu

Ry
ux Ry

uu

)

(

(

∆x

∆u

)

⊗
(

∆x

∆u

)

)

. (S23)

In a second-order expansion, the benefit and cost changes can be approximated as

g ≈ g(ū) + zy ·∆y +
1

2
∆yTZyy∆y

h ≈ h(ū) + hu ·∆u+
1

2
∆uTHuu∆u. (S24)

The expansions (S23) and (S24) can be inserted into the fitness formula f = z(y(x,u)) + h(u). Differentiating

the fitness function f(x̄ +∆x, ū + ∆u) by the external changes ∆x and enzymes ∆u yields the gradients and

8



Hessian matrices

fTx = zTy Ry
x

fTu = zTy Ry
u − hT

u

Fux = zTy ·Ry
ux +Ry

u
T
ZyyR

y
x

Fuu = zTy ·Ry
uu +Ry

u
T
ZyyR

y
u −Huu. (S25)

S3.2 Fitness under periodic perturbations

Shifts of average state variables, caused by periodic perturbations Now we assume that the external

parameters oscillate around the reference state (no average shift):

x(t) = x̄+ Re[x̃ eiωt]

u(t) = ū+ Re[ũ eiωt]. (S26)

The time average of u is simply ū. The time average ȳ is expanded by Eq. (S8) using the second-order periodic

response coefficients:

∆ȳ ≈ 1

2

( R
y
x̃ũ R

y
x̃ũ

R
y
ũũ R

y
ũũ

)(

(

x̃

ũ

)

⊗
(

x̃

ũ

)

)

. (S27)

There is no first-order term because R
y
x̃ and R

y
ũ vanish.

Fitness functional applied to time-averaged state variables (“fluctuation-insensitive fitness”) We define

a fitness by applying the fitness function f = z(y(x,u)) + h(u) to time-averaged state variables. Since the time

averages of the enzyme levels remain constant (∆u = 0), benefit and cost can be expanded as

g(〈y〉t) ≈ g(ū) + zy ·∆ȳ +
1

2
∆ȳTZyy∆ȳ

h(〈u〉t) = h(ū). (S28)

and with Eq. (S27), the derivatives of f = g(〈y〉t)− h(〈u〉t) read

fTx̃ = 0

fTũ = 0

Fũx̃ = zTy ·Ry
ũx̃

Fũũ = zTy ·Ry
ũũ. (S29)

Fitness functional based on time-averaged fitness values (“fluctuation-sensitive fitness”) Instead of

averaging the state variables over time and applying the fitness function afterwards, we can also evaluate the

fitness in each time point and then average over time. This yields additional terms in the fitness Hessians. To

derive them, we expand the time courses y(t) to second order (obtaining a sum of harmonic oscillations), expand

the fitness function in each time point, integrate over one oscillation period (duration T ) and collect all terms up
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to second order. For the cost term, we obtain:

〈h(u)〉t =
1

T

T
∫

0

h(ū+ Re[ũeiωt)]dt

≈ 1

T

T
∫

0

h(ū) + hu · Re[ũeiωt] +
1

2
(ũeiωt)†Huu(ũe

iωt)dt

= h(ū) +
1

4
ũ†Huuũ. (S30)

The first-order term cancels out in the integration . The benefit term is computed similarly, yielding

〈g(y)〉t = g(ȳ) +
1

4
ỹ†Zyyỹ where ỹ = Ry

xx̃+Ry
uũ.

Together, the time-averaged fitness terms

〈g(y)〉t ≈ g(ū) + zy ·∆ȳ +
1

2
∆ȳTZyy∆ȳ +

1

4
ỹ†Zyyỹ

〈h(u)〉t = h(ū) +
1

4
ũ†Huuũ (S31)

yield the first and second order derivatives of f = 〈g(y) − h(u)〉t

fx̃ = 0

fũ = 0

Fũx̃ = zTy R
y
ũx̃ +

1

2
R

ỹ
ũ

†
ZyyR

ỹ
x̃

Fũũ = zTy R
y
ũũ +

1

2
R

ỹ
ũ

†
ZyyR

ỹ
ũ −

1

2
Huu. (S32)

Since R
y
p̃p̃(ω = 0) = 1

2R
y
pp, the Hessians become half of the static Hessians Fux and Fuu. Finally, we can apply

stationary and periodic perturbations at the same time. Between stationary and periodic perturbations, there

are no second-order synergy terms (mixed second derivatives) that could shift the metabolic state on average,

so the derivatives of our fitness function F (x̄, ū; ∆x̄,∆ū; x̃, ũ) with respect to ∆x̄,∆ū, x̃, and ũ are given by

Eqs. (S29) and (S32).

S3.3 Bounds for enzyme amplitudes

The complex amplitude ũ of an enzyme profile ū+ Re[ũeiωt] is limited by a number of constraints:

1. The amplitude cannot be larger than the average enzyme level: |ũ| ≤ ū; otherwise, the enzyme level would

become negative.

2. If the enzyme itself is linearly degraded with rate constant κ then, as shown in section S2.4, the enzyme

amplitude needs to satisfy ũ ≤
√

κ
κ+ω ū. Otherwise the corresponding mRNA level would become negative.

This constraint is tighter than the previous one; both constraints become equal at frequency ω = 0.

3. The time derivative of the enzyme level, du/dt = ũ ω − sin(ωt), shows that the maximal rate of decrease,
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Figure S3: Enzyme amplitude constraints, assuming an average enzyme level ū and a degradation constant κ = 1.
The shaded region contains the allowed enzyme amplitudes.

ũ ω, is reached in a moment when the enzyme level has its average value of ū. The degradation rate in this

moment reads κ ū. Since the maximal rate of decrease cannot be larger than the degradation rate in the

same moment, we obtain another constraint ũ ≤ κ
ω ū.

Thus, the upper bound of an enzyme amplitude depends on the frequency. All constraints together are shown in

Figure S3.

S3.4 Enzyme profiles that realise a predefined metabolic behaviour

Given external parameter rhythms x̃ and some rhythms c̃ and ṽ to be realised, what enzyme profiles ũ will realise

these rhythms as closely as possible and at a minimal cost? Guessing such enzyme profiles is difficult, not only

because of the complex system dynamics, but also because they need to be self-consistent, i.e. all profiles must

be adapted to the dynamic state they create. To compute such profiles, we need to invert the propagation of

perturbations in the network. Such inverse problems can be numerically hard, but approximations using MCA, as

used in [5] for optimal control of steady states, make them tractable.

For harmonic perturbations of a single frequency, the forward propagation – in a first-order approximation – is

described by periodic response coefficients, so the enzyme profile for this frequency could be computed by inverting

the response matrix. For instance, to realise a predefined complex amplitude profile c̃
!
= R̃c̃

ũũ+ R̃c̃
x̃ x̃, we may set

ũ = R̃c̃
ũ

−1 [c̃ − R̃c̃
x̃ x̃]. If no solution exists, we may employ a least-squares optimisation, and if the solution is

underdetermined, a regularisation term. Altogether, the criterion for the enzyme amplitude vector u would read

||(c̃− R̃c
x x̃)− R̃c̃

ũũ||+ ũ† ũ
!
= min. To realise a non-harmonic time course c(t), we may synthesise it by adding

enzyme rhythms of different frequencies.
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S3.5 Enzyme levels and enzyme activities

S4 Periodic economic potentials

S4.1 Periodic economic potentials

Flux value balance. Given the periodic economic potentials, we can compute the value of an enzyme rhythm.

Case 1. Values in a static reference state. Assume that we are in a non-oscillatory state. To derive the balance

equation, we consider a compensated variation of the enzyme rhythm. Consider a variation ∆ũl of the enzyme

rhythm. To first order, it can be compensated by harmonic supply fluxes with amplitude ϕ̃i = −nil
∂ṽl
∂ũl

∆ũl. Since

the reaction rate (at unchanged reactant profiles) changes linearly with the enzyme level, we can set ∂ṽl
∂ũl

= v̄l/ūl

and obtain the (negative) compensation value

0 =
∑

i

w̃i ϕ̃i =
∑

i

−w̃i nil
v̄l
ūl

∆ũl (S33)

which compensates the additional enzyme investment hũl
∆ũl, so

∑

i

w̃i nil
v̄l
ūl

∆ũl = hũl
∆ũl. (S34)

We obtain the balance equation

∑

i

w̃i nil v̄l = hũl
ūl. (S35)

In a periodic state with enzyme rhythms ũ, the periodic enzyme loss hũ can be approximated by hũ ≈ Hũũ ũ

Case 2. Values in an oscillating state. Now we consider a state that is already harmonically driven at a

frequency ω. We assume a static reference state and perturb it by deviations ∆ū and ũ (for enzyme levels) and

∆x̄ and x̃ (for external parameters). Accordingly, the metabolic state will be changed by ∆c̄ and c̃ (for internal

metabolite levels) and ∆v̄ and ṽ (for fluxes). The amplitudes refer to oscillations at the driving frequency ω.

Higher harmonics will in general exist, but we do not consider them here. Now we consider the effects of small

changes in ∆ū and ũ on ∆v̄ and ṽ, assuming that the metabolite profile remains unchanged (e.g., by keeping

it unchanged with the help of virtual supply fluxes). We obtain the economic balance equations (proof section

S6.3)

Dg(u)hu = Dg(v̄per)[[NTwc + zv] +A [NTw̃c + z̃v]]

Dg(u) h̃u = Dg(v̄per)[A [NTwc + zv] + [NTw̃c + z̃v]] (S36)

where hu and h̃u are the losses for additional enzyme variations δu and δũ.

S4.2 Periodic economic potentials

Can enzyme-economic analysis also be applied to periodic states and periodic enzyme profiles? As a basic ideas

of enzyme-economic analysis, the investment into enzymes has to be justified by their metabolic benefit, which

12



can thus be seen as an incentive for enzyme expression. This incentive can be quantified by the extra benefit

that would be generated by small virtual changes of enzyme levels in steady states. If the stationary flux v of a

single reaction (with mass-action rate law v = k u x) is the objective function f , the derivative f̄u = ∂v
∂u = k x is

the enzyme gain. Since the enzyme level is a prefactor in the rate law, the enzyme benefit, in this case, can be

written as a product f = fu ·u. In an optimal state with positive enzyme levels, it must match the marginal cost

hu = ∂h
∂u .

Let us now apply the same thought to time-dependent behaviour. If a reaction flux is directly scored by the

benefit function, we can define a momentary demand for the enzyme: in an isolated reaction with varying

substrate levels, the enzyme will produce a different flux per enzyme molecule in every moment. This can be

quantified by a momentary enzyme gain fu(t) = ∂v(t)
∂u(t) = k x(t). If a certain total enzyme cost can be

distributed over one oscillation period, the cell should concentrate enzyme expression in the moments when the

enzyme is most valuable. If the substrate level is harmonic x(t) = x̄+ Re[x̃ exp(iωt)], then also the momentary

benefit ∂v(t)
∂u(t) = k x(t) will also change periodically and can be described by a complex amplitude: fu(t) =

k x̄ + Re[k, x̃ exp(iωt)]) = f̄u + Re[f̃u exp(iωt)]). Actually, the ideal enzyme profile in this case would be a

short, delta-like peak in the moment of highest substrate level; but in reality, enzyme profiles have to be smooth

and, in our approach, they are assumed to be harmonic u(t) = ū + Re[ũ exp(iωt)]. In this case, the change of

the benefit functional (assuming fixed ū and omitting constant terms) reads:

∆f ≈ 〈k∆x∆u〉t =
1

2
Re(k x̃∗ ũ) = Re(f̃∗

u ũ). (S37)

Written like this, the benefit change resembles the enzyme benefit f̄u ·u in steady states, but the benefit amplitude

f̃∗
u = δ∆f

δũ and the enzyme amplitude ũ are complex numbers and the real part of the product is taken. If the

enzyme amplitude |ũ| is limited, a that this limit is reached and that enzyme rhythm and enzyme gain are in

phase. A larger absolute value of |f̃∗
u | means a larger demand. Therefore, we can regard the complex number f̃∗

u

as the incentive for enzyme rhythms, with the phase angle denoting the optimal phase. Eq. (S37) is still based

on a mass-action rate law. For other rate laws, we apply a second-order approximation with the second-order

unscaled elasticity Ēxu = ∂2v
∂x ∂u and obtain a similar equation with a periodic enzyme value f̃u = δ〈f〉t

δũ ≈ Ēxu

2 x̃.

The periodic enzyme gain shows how strongly the periodic enzyme modulation improves the overall benefit, and

in which phase it is most effective.

In larger networks, periodic substrate levels will not be predefined, but emerge from the metabolic dynamics.

Therefore, enzymes do not only realise benefits given their substrate levels, but they can also actively change

the substrate levels, influence the dynamics of the entire system, and realise benefits in distant parts of the

network. The enzyme gain has to be redefined to include global influences, phase delays, and anticipation; in

particular, instead of the reaction elasticities (which isolated reactions, in which reactant levels controlled and

the flux depends directly on reactant and enzyme levels), we need to employ response coefficients (which hold

for extended systems in which fluxes and concentrations follow the system dynamics). Given periodic external

perturbations (with amplitude x̃), we consider the overall fitness shift as a function of the enzyme amplitudes ũ.

A first-order expansion with respect to ũ (regarding synergies between x̃ and ũ as first-order effects) reads (proof

see SI S4.3)

∆f ≈ x̃†Rf
x̃ũũ = [∆w̃ + zv]†Dg(

v

u
) ũ = f̃†u ũ. (S38)

In the first equation, the synergies between the amplitudes x̃j and ũl are expressed using the second-order, spectral
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response matrix Rf
x̃ũ. Then, the unscaled enzyme elasticities Ēvl

ul
= vl/ul are split off and the remaining spectral

control matrix is expressed in terms of the gradient ∂f/∂vl of the metabolic benefit as a function f of the reaction

rates vl and the vector ∆w̃ = N Tw̃, containing the differences of the periodic economic potentials w̃i along

the reactions. By their definition (see SI ), these potentials describe how a small, additional, periodic influx of a

certain metabolite would influence the benefit function, taking into account all its dynamic effects on the periodic

metabolic state. Equation (S38) shows that the complex-valued enzyme values f̃ul
– including their optimal phase

shifts – can be directly computed from the periodic economic potentials. For reactions without direct influence

on the benefit (fvl = 0), the periodic enzyme gains are simply determined by the periodic economic potential

differences ∆w̃l. Otherwise, the marginal benefits fvl have to be added. Importantly, and in contrast to the

calculations in the previous sections, Eq. (S38) describes synergies between external oscillations and enzyme levels

as first-order effects of the enzyme levels, whereas all self-synergies and synergies between the enzyme rhythms

are ignored.

To maximise the benefit in Eq. (S38), the enzyme amplitudes ũl would have to increase to infinity unless they

are restricted by upper bounds. In fact, the computed enzyme values f̃ul
describe the benefits only for small

amplitudes at the onset of enzyme rhythms. We may use them to estimate the phases and relative amplitudes

in the optimal amplitude vector ũ very roughly, but not their proper scaling since the enzyme benefit given by

Eq. (S38) increase linearly with the amplitude. To obtain a unique solution, we need to employ regularisation,

e.g., require that the fitness increase ∆f in Eq. (S38) be maximised, but at limited amplitudes |ũl| ≤ umax
l .

Periodic enzyme gains and periodic economic potentials would be hard to measure in experiments. However,

Eq. (S38) shows that self-consistent, optimal enzyme rhythms can be understood in terms of a local importance

of the reactants, which changes periodically. Like in normal enzyme-economic analysis, their importance is

quantified by economic potentials, which subsume all relevant details of the optimisation in the larger network.

S4.3 Periodic economic potentials and flux gain balance

To prove Eq. (S38), we consider a thought experiment: a metabolic system is periodically perturbed by a single

parameter with amplitude x̃. That is, fluxes and metabolite levels are already oscillating. Now we add a small

oscillation of one enzyme (amplitude ũl) and, for compensation, periodic supply fluxes of the reactants i with

amplitudes ϕ̃ = −nilĒ
vl

ul
ũ. To first order in ũ, the reaction flux will be periodically change (ṽl = Ēvl

ul
ũl), but the

reactant concentrations behave as before, and also the (periodic) behaviour of surrounding system will remain as

before. The only fitness change due to the compensated perturbation arises in the reaction itself. It reads, to

first order in ũ

∆f comp =
∂f

∂v
ṽ =

∂f

∂v
Ēuũ (S39)

However, this has to be equal to the overall fitness change given in terms of the perturbations ũ and ϕ̃ (again,

to first order in these variables)

x̃†Rf
x̃ũũ+ x̃†Rf

x̃ϕ̃ϕ̃ = x̃†Rf
x̃ũũ− x̃†Rf

x̃ϕ̃N
T Ēu ũ (S40)

and thus

[

x̃†Rf
x̃ϕ̃N

T +
∂f

∂vl

]

Dg(Ēu)ũ = x̃†Rf
x̃ũũ. (S41)
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which can also be cast as

[

w̃† NT + zv
] v

u
ũ = fũ ũ. (S42)

S5 Example models

S5.1 Rate oscillations cause reactants to oscillate

Model 1 In kinetic models, periodic perturbations of reaction rates will make the substrate and product levels

oscillate, and the rhythms will propagate from one reaction to the other. As an example, consider two reactions

X
kx x−→ Y

kY y−→ with irreversible mass-action kinetics v1 = kx x and v2 = kY y. We can perturb reaction 1 through

the enzyme or through the substrate. Let us consider the substrate: if the substrate level x(t) varies harmonically

with complex amplitude x̃ and frequency ω, and the enzyme level is constant, Y will show a complex amplitude

ỹ = kX

kY +iω x̃. This means that Y will peak after X with a phase shift φ = arctan(ω/kY ) while the amplitude

decreases from X to Y by a factor | ỹx̃ | =
kX√
k2

Y
+ω2

. In a linear pathway, the rhythmic perturbation will propagate

with a local wavelength 2 π/φ and a speed V = φ/ω (in units of reactions per second).

Model 2 In general, rate perturbations affect both subtrates and products: consider three reactions
v0−→ X

u kx x−→ Y
kY y−→ with irreversible mass-action kinetics and a constant production of X. In a first-order approximation of the

rate law, an enzyme rhythm with amplitude ũ will evoke reactant amplitudes x̃ = i kX

ω ũ and ỹ = kX

kY +i ω ũ .

As shown in Figure 2 (c), U will peak after X (phase shift π/2) and before B (phase shift between 0 and π/2,

depending on the rate constants).

S5.2 Single enzyme

In this section, I analyse oscillations in a single enzymatic reaction. In contrast to the example in the article, I

assume a reversible rate law, and for illustration purposes, cosine functions are used instead of complex expo-

nentials. I first describe the dynamics, deriving synergies between enzyme and reactant rhythms, and then the

economics, computing an optimal enzyme rhythm for a quadratic cost function.

Dynamics We consider a single reaction with substrate X1 and product X2 and respective concentrations x1 and

x2. The reaction is driven by an enzyme with activity u and reversible mass-action kinetics. For simplicity, we set

both rate constants to 1, so the reaction rate reads

v = u(x1 − x2). (S43)

Now we consider reactant levels set by the environment

x1(t) = x̄1 + x̃1 cos(ωt)

x2(t) = x̄2. (S44)

and possible periodic enzyme levels

u(t) = ū+ ũ cos(ωt+ φ). (S45)
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To ensure that u remains positive, we require that ū ≥ 0 and |ũ| ≤ ū; the phase shift φ can vary between 0 and

2π and the amplitudes x̃1 and ũ are real numbers. The time-dependent reaction rate reads

v(t) = (ū + ũ cos(ωt+ φ))(x̄1 + x̃1 cos(ωt)− x̄2)

= ū (x̄1 − x̄2) + ũ cos(ωt+ φ)(x̄1 − x̄2) + ū x̃1 cos(ωt) +

ũ cos(ωt+ phi)x̃1 cos(ωt). (S46)

The last term follows from multiplying the two cosine functions: it describes a synergy between the periodic

substrate and enzyme levels, leading to an average flux shift and to flux oscillations with frequency 2ω. Averaged

over an oscillation period, the flux reads

v̄ =
1

T

T
∫

0

v(t) dt = ū (x̄1 − x̄2) +
1

2
ũ x̃1 cos(φ). (S47)

All oscillatory terms from Eq. (S46) average out; the first term in Eq. (S47) is the flux that would result from the

steady reference state; the second term describes a shift, caused by the synergy between the periodic reactant

and enzyme levels. The cos2 term, averaged over an oscillation period, yields a factor of 1
2 .

Economics The flux in this model could be increased to arbitrarily high values by increasing the enzyme level,

and be further increased by oscillations (where the average value needs to be as large as the amplitude, to avoid

negative values). For a more realistic economic description, I assume that an enzyme level u comes at a cost

h(u(t)) = αu(t) +
β

2
u2(t)

= α
(

ū+ ũ cos(ωt+ φ)
)

+
β

2

(

ū2 + 2 ū ũ cos(ωt+ φ) + ũ2 cos2(ωt+ φ)
)

(S48)

with positive coefficients α and β. Averaged over time, the cost reads

〈h̄〉t =
1

T

T
∫

0

h(t) dt = α ū+
β

2
ū2 +

β

4
ũ2 = h(ū) +

β

4
ũ2. (S49)

Again, the cosine terms cancel out and the cos2 term, averaged over an oscillation period, yields a factor of 1
2 .

Compared to the reference state, the cost is increased, and the additional cost depends on oscillation amplitude

and cost curvature. The fitness function F , given by the difference of the flux (benefit) and the enzyme cost,

both averaged over time, reads

F = 〈y〉t − 〈h〉t =
(

ū(x̄1 − x̄2) +
1

2
ũ x̃1 cos(φ)

)

−
(

αū +
β

2
ū2 +

β

4
ũ2

)

. (S50)

To maximise the fitness for a given substrate amplitude x̃1, the cell needs to choose the optimal enzyme profile,

that is, the pair (ū, ũ) that maximizes F given x̃ under the constraints ū ≥ 0, |ũ| ≤ ū. The average reactant

levels x̄1 > x̄2 are fixed and given. To determine the optimal values ū and ũ, we collect all terms that depend
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either on the time averages (ū) or on the oscillations (ũ and φ):

F =

(

(x̄1 − x̄2 − α)ū − β

2
ū2

)

+

(

1

2
ũx̃1 cos(φ) −

β

4
ũ2

)

. (S51)

Without inequality constraints for ū and ũ, we can maximise both terms separately and obtain

ūopt = (x̄1 − x̄2 − α)/β

cos(φopt) = 1

ũopt = x̃1/β. (S52)

For x̃ = 0, we obtain the enzyme-optimal reference state (ũopt = 0). We still need to check if the constraints are

satisfied: the solution for ū only holds if α < x̄1 − x̄2: the benefit of an enzyme molecule produced (if no enzyme

is present yet) must exceed its own cost; otherwise, we obtain a boundary optimum at ū = 0 and the enzyme

is not expressed. The optimum for ũ holds whenever ũopt ≤ ūopt, otherwise, we obtain a boundary optimum at

ũ = ūopt.

S5.3 Linear metabolic pathway

S5.4 Yeast central metabolism
Example: periodic adaption in central metabolism to varying ATP/ADP ratio Optimal enzyme rhythms

in larger networks become more complex. Figure S4 shows the optimal adaption to periodic ATP and ADP levels

in yeast central metabolism. The model is described in more detail in SI S5.4. As an external perturbation,

opposing changes of the ATP and ADP levels were applied. The perturbation, by itself, evokes wide-spread driven

oscillations in fluxes and metabolite levels. As an optimal adaption, the model predicts a relatively homogeneous

up- and downregulation of all enzymes in glycolysis, while the enzymes in the TCA cycle are almost inactive.

S5.5 Glucose storage model

S6 Proofs

S6.1 Periodic parameter synergies evoke static shifts and second harmonics

In the model M1 in the article, a synergy between substrate and enzyme rhythm (quadratic term in ũ and x̃)

leads to a static shift (frequency 0) and a second harmonic (frequency 2ω):

Re(ũ eiωt)Re(x̃ eiωt) =
1

2
(ũ eiωt + ũ∗ e−iωt)

1

2
(x̃ eiωt + x̃∗ e−iωt)

=
1

4

[

ũ x̃ei2ωt + ũ∗ x̃+ ũ x̃∗ + ũ∗ x̃∗ e−i2ωt
]

=
1

2
Re(ũ x̃ ei2ωt) +

1

2
Re(ũ∗ x̃). (S53)
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(a) Network (b) Metabolites (passive response (c) Fluxes (passive response
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Figure S4: Enzyme adaption to periodic ATP and ADP levels in central metabolism of the yeast S. cere-
visiae. (a) Network structure (external metabolites in blue, allosteric activation and inhibition shown by blue
and red arcs). (b) Concentration rhythms evoked by a predefined ATP/ADP oscillation (amplitudes and phases
shown by arrows. (c) Flux rhythms evoked by ATP/ADP oscillation. (d) Adaptive enzyme rhythm (complex
amplitudes shown by arrows). (e) Concentration rhythm caused by adaptive enzyme rhythm. (f) Flux rhythm
caused by adaptive enzyme rhythm. Driven oscillations and optimal enzyme rhythm were computed using the
MCA-based approximation described in the text.

S6.2 Derivation of Eq. (S19) for periodic response coefficients

The prefactor of the periodic response coefficients can be derived as follows. We consider a Fourier transformation

with the same prefactor convention as in [3]:

x(t) =
1√
2π

∫

x̃ ei ω tdt, x̃(ω) =
1√
2π

∫

x e−i ω tdt. (S54)
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Figure S5: Enzyme levels that become active only when induced by external oscillation. Left: Due to
constraints in the fitness landscape, the optimal static state may contain inactive enzymes. Scheme like in Figure
5; the x-axis shows the total level ū + ∆u. Enzyme amplitudes and average levels are constrained (forbidden
region in profile space shaded), which allows for boundary optima. With the fitness function shown, the enzyme is
inactive when confined to the optimal steady state (square), but becomes active if oscillations are allowed (dot).
Right: Model of glycogen storage and consumption. (a) Model structure. Glucose and glycogen are assumed to
be slowly diluted (not shown). (b) Fluxes in the reference state. In steady state, storage enzymes would lead to a
drain of glucose and to enzyme investments, so they remain inactive. (c) Fluxes during storage phase; overly high
glucose levels are decreased. (d) Consumption phase; the flux is stabilised by reconverting glycogen into glucose.

A harmonic parameter perturbation with complex amplitude vector p̃,

∆p(t) = Re[p̃ eiωt] =
1

2

[

p̃ eiωt + p̃∗ e−iωt
]

(S55)

has the Fourier transform

p̂(α) =

√
2π

2
δα(ω) p̃+

√
2π

2
δα(−ω) p̃∗. (S56)

The Fourier components of the state variables can be approximated using the spectral response cofficients R̃ỹ
p̃,

i.e. the functional derivatives between the respective Fourier components [3]. In a first-order expansion, the

Fourier component at frequency α reads

ŷ(α) ≈ R̃
ỹ
p̃(α) p̂(α) =

√
2π

2
δα(ω) R̃

ỹ
p̃(ω) p̃+

√
2π

2
δα(−ω) R̃ỹ

p̃(−ω) p̃∗. (S57)

By applying the inverse Fourier transformation, we obtain the behaviour in the time domain

∆y(t) ≈ 1

2

(

R̃
ỹ
p̃(ω) p̃ eiωt + R̃

ỹ
p̃(−ω) p̃∗e−iωt

)

= Re[R̃ỹ
p̃(ω) p̃ eiωt]. (S58)
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because R̃
ỹ
p̃(−ω) and R̃

ỹ
p̃(ω) are complex conjugates. Therefore, our first-order expansion cofficient Rỹ

p̃(ω), the

periodic response coefficient, is identical with the spectral response cofficient R̃ỹ
p̃(ω). Now consider the second

order. An expansion with spectral response cofficients yields additional terms in the Fourier transform, to be

added to Eq. (S57):

δα(0) R̃
y
p̃p̃(ω)

(√
2π

2
p̃⊗

√
2π

2
p̃∗
)

+
1

2
δα(2ω)R̃

ỹ
p̃p̃(ω)

(√
2π

2
p̃⊗

√
2π

2
p̃

)

+
1

2
δα(−2ω)R̃ỹ∗

p̃p̃(ω)

(√
2π

2
p̃∗ ⊗

√
2π

2
p̃∗
)

=
2π

4

(

δα(0) R̃
y
p̃p̃(ω) [p̃⊗ p̃∗] +

1

2
δα(2ω) R̃

ỹ
p̃p̃(ω) [p̃⊗ p̃] +

1

2
δα(−2ω) R̃ỹ∗

p̃p̃(ω) [p̃
∗ ⊗ p̃∗]

)

(S59)

In the time domain (Eq. (S28)), we obtain the additional terms

...+

√
2π

4

(

R̃
y
p̃p̃(ω)[p̃⊗ p̃∗] +

1

2
R̃

ỹ
p̃p̃(ω)[p̃⊗ p̃] ei2ωt +

1

2
R̃

ỹ∗
p̃p̃(ω)[p̃

∗ ⊗ p̃∗]e−2iωt

)

= ...+
1

2
Re

(√
2π

2
R̃

y
p̃p̃(ω)[p̃⊗ p̃∗]

)

+
1

2
Re

(√
2π

2
R̃

ỹ
p̃p̃(ω)[p̃⊗ p̃]e2iωt

)

. (S60)

The periodic response coefficients, needed for th expansion in Eqs (S7) and (S8), therefore read

R
y
p̃p̃(ω) =

√
2π

2
R̃

y
p̃p̃(ω), R

ỹ
p̃p̃(ω) =

√
2π

2
R̃

ỹ
p̃p̃(ω). (S61)

S6.3 Economic balance equations for periodically perturbed system Eq. (S36)

We consider the effects of small changes in ∆ū and ũ on ∆v̄ and ṽ, assuming that the metabolite profile remains

unchanged (e.g., by keeping it unchanged with the help of virtual supply fluxes). To this aim, we write down the

expansion of ∆v̄ and ṽ, keeping only relevant terms containing ∆ū and ũ:

∆v̄ ≈ Ev
u ∆ū+∆c̄T Ev

cu ∆ū+ Re(c̃† Ev
c̃ũ ∆ũ)

∆ṽ ≈ Eṽ
ũ ũ+∆c̄T Eṽ

cũ ũ+ c̃† Eṽ
c̃u ∆ū (S62)

Other terms vanish because (i) the second-order enzyme elasticities Ev
uu vanish; or (ii) because frequencies do

not match (e.g., the coupling of two static changes cannot yield a periodic change). If we now apply changes to

the enzyme profiles, the flux changes read:

δv =
∂v̄

∂∆ū
δū+

∂v̄

∂ũ
δũ =

[

Ev
u +∆c̄T Ev

cu

]

δū+
[

c̃† Ev
c̃ũ

]

δũ

δṽ =
∂ṽ

∂∆ū
δū+

∂ṽ

∂ũ
δũ =

[

c̃†Eṽ
c̃u

]

δū+
[

Eṽ
ũ +∆c̄T Eṽ

cũ

]

δũ (S63)

With Ev
u = Eṽ

ũ = Dg(v)Dg(u)−1 and Ev
cu = Eṽ

c̃u = Eṽ
cũ = Ev

c
TDg(u)−1, this yields

δv =
[

Dg(v + Ev
c ∆c̄)Dg(u)−1

]

δū+
[

Dg(Ev
c c̃

†)Dg(u)−1
]

δũ

δṽ =
[

Dg(Ev
c c̃)Dg(u)

−1
]

δū+
[

Dg(v + Ev
c ∆c̄)Dg(u)−1

]

δũ (S64)
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After introducing the mean flux vector v̄per = v + Ev
c ∆c̄ (the average in the periodic state) and the matrix

E =

(

Dg(v̄per)Dg(u)−1 Dg(Ev
c c̃)Dg(u)

−1

Dg(Ev
c c̃)Dg(u)

−1 Dg(v̄per)Dg(u)−1

)

we can write this as

(

δv

δṽ

)

= E
(

δu

δũ

)

(S65)

The virtual fluxes needed to compensate thus read

(

δϕ

δϕ̃

)

= −
(

N 0

0 N

)

(

δv

δṽ

)

= −
(

N 0

0 N

)

E
(

δu

δũ

)

(S66)

The internal enzyme gains (static or periodic) are defined as the total derivatives of the utility function with

respect to enzyme changes; the economic potentials (static or periodic) are defined as the total derivatives of the

utility function with respect to virtual fluxes:

wu =
∂g

∂δu
, w̃u =

∂g

∂δũ

wc =
∂g

∂δϕ
, w̃c =

∂g

∂δϕ̃
(S67)

Considering a static enzyme variation δu, δ̃u and assuming a full compensation (and a utility function that is not

explicitly dependent on fluxes), we can require

0 = wuT δu+ w̃u† δũ+wϕ δϕ+ w̃ϕ δϕ̃

=

(

wu

w̃u

)†(
δu

δũ

)

+

(

wc

w̃c

)†(
δϕ

δϕ̃

)

=

(

wu

w̃u

)†(
δu

δũ

)

−
(

wc

w̃c

)†(
N 0

0 N

)

E
(

δu

δũ

)

(S68)

After omitting the variation vector
(

δu
δũ

)

and transposing the equation, we obtain (noting that E is symmetric)

(

wu

w̃u

)

= E
(

NTwc

NTw̃c

)

=

(

Dg(u)−1 Dg(v̄per) Dg(u)−1 Dg(Ev
c c̃)

Dg(u)−1 Dg(Ev
c c̃) Dg(u)−1 Dg(v̄per)

)

(

NTwc

NTw̃c

)

=

(

Dg(u)−1 Dg(v̄per) 0

0 Dg(u)−1 Dg(v̄per)

)(

I A

A I

)

(

NTwc

NTw̃c

)

(S69)

where A = Dg(Ev
c c̃)Dg(v̄

per)−1. If we consider the values in the unperturbed reference state, A vanishes and

the two equations decouple:

Dg(u)wu = Dg(v̄per)NTwc

Dg(u) w̃u = Dg(v̄per)NTw̃c (S70)
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Otherwise, we obtain the coupled equations

Dg(u)wu = Dg(v̄per)[NTwc +ANTw̃c]

Dg(u) w̃u = Dg(v̄per)[ANTwc +NTw̃c] (S71)

This is only the indirect value. For the direct value, we need to add the effects of a possible direct flux gain,

δgdirect = zv
T δv + z̃v

†
δṽ =

(

zv

z̃v

)†
E
(

δu

δũ

)

(S72)

The formulae for the entire value thus read

Dg(u)wu = Dg(v̄per)[[NTwc + zv] +A [NTw̃c + z̃v]]

Dg(u) w̃u = Dg(v̄per)[A [NTwc + zv] + [NTw̃c + z̃v]] (S73)

Assuming optimality, that is a balance between enzyme cost and benefit, we obtain the equations

Dg(u)hu = Dg(v̄per)[[NTwc + zv] +A [NTw̃c + z̃v]]

Dg(u) h̃u = Dg(v̄per)[A [NTwc + zv] + [NTw̃c + z̃v]] (S74)

where hu and h̃u are the losses for additional enzyme variations δu and δũ.
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