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S1 Economic balance equations – derivations in comparison

The economic balance equations for various metabolic optimality problems can be derived in a few simple steps.

Let us see this for the optimality problems shown in Figure ??. First, to make the problems comparable, we write

them all as maximisation problems in expanded form: all model variables are treated as free variables and all

relations among them as explicit constraints. In the formulae below, similarities between optimality problems are

highlighted by colours. For more detailed derivations, see SI section S2.

1. Flux cost minimisation In flux cost minimisation, we search for a stationary flux distribution v that minimises

a flux cost function a(v) at a given flux benefit b(v). The optimality problem, the Lagrange function, and its

optimality condition read:
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Maximisev F = −a(v) s.t. Nint v = 0 b(v) = b′

L = −a(v) +wint
r
>
Nint v +αb (b(v)− b′)

∂vL = 0: 0 = −av +N>int w
int
r +bv

The optimality condition contains the flux price vector av = ∂a/∂v, Lagrange multipliers associated with sta-

tionarity constraints in a vector wint
r , and a vector bv = αb bv (where αb is the Lagrange multiplier for the flux

benefit constraint and bv = ∂b/∂v). The resulting balance equation, with flux prices avl , reads

N>int w
int
r + bv = av. Reaction balance (S1)

2. Flux cost minimisation with enzymatic flux cost Now we consider a kinetic model and minimise an enzyme

cost h(e) at a fixed flux benefit b(v); the fluxes must be stationary, the rate laws (between metabolite levels c,

enzyme levels e, and fluxes v) must be respected, and the metabolite levels must satisfy physiological bounds.

Maximisev,c,e F = -h(e) s.t. Nint v = 0 v(c, e) = v b(v) = b′ cmin ≤ c ≤ cmax

L = −h(e) +wint
r
>
Nint v −αb (v − v(c, e)) +bv

>(b(v)− b′) −qmin
cint
>

(c− cmin)

+qmax
cint
>(cmax − c)

∂vL = 0: 0 = 0 +N>int w
int
r −akin

v +bv

∂cL = 0: 0 = 0 0 E>c akin
v −qbnd

cint

∂eL = 0: 0 = −he 0 Ee a
kin
v

Compared to the previous problem, we obtain the additional Lagrange multiplier vectors akin
v for rate law con-

straints (with signs chosen for convenience) and −qbnd
cint = qmin

cint + qmax
cint for metabolite bounds (which vanish for

all inactive bounds). Note that a metabolite can have a non-zero entry in qmin
cint or qmax

cint , but not in both of them.

By solving the equations (in the order 3, 1, and 2), we obtain

akin
v = E−1

e he

E−1
e he = N>int w

int
r + bv

E>c E−1
e he = qbnd

cint .

Combining the equations yields the economic balance equations

N>int w
int
r + bv = akin

v Reaction balance

E>c akin
v = qbnd

cint Load-potential balance (S2)

where the flux price akin
v , originally a vector of Lagrange multipliers, can now be seen as a shortcut for akin

v =

E−1
e he.

3. Enzyme benefit-cost optimisation In a kinetic model, we minimise the difference of a metabolic benefit

b(v, c) and an enzyme cost h(e); fluxes must be stationary, rate laws must be respected, and metabolite levels

must satisfy physiological bounds.

2



Maximisev,c,e F = b(v, c)− h(e) s.t. Nintv = 0 v(c, e) = v cmin ≤ c ≤ cmax

L = b(v, c)− h(e) +wint
r
>
Nint v −akin

v
>

(v − v(c, e)) −qmin
cint
>

(c− cmin)

+qmax
cint
>(cmax − c)

∂vL = 0: 0 = bv +N>int w
int
r −akin

v

∂cL = 0: 0 = −qcint 0 E>c akin
v −qbnd

cint

∂eL = 0: 0 = −he 0 Ee a
kin
v

By solving the equations (in the order 3, 1, and 2), we obtain

akin
v = E−1

e he

E−1
e he = N>int w

int
r + bv

E>c E−1
e he = qcint + qbnd

cint .

This yields the same economic balance equations as before (but now the terms have a different mathematical

meaning)

N>int w
int
r + bv = akin

v Reaction balance (with kinetics-derived flux prices)

E>c akin
v = qapp

cint
Metabolite balance (S3)

with the apparent metabolite price qapp
cint

= qcint + qbound
cint and again taking akin

v = E−1
e he as a definition.

4. Cost minimisation in metabolite space at given fluxes In a kinetic model, we maximise the difference

between metabolic benefit and enzyme cost; all fluxes are given (they must be thermodynamically feasible), the

rate laws must be respected, and metabolite levels must satisfy physiological bounds.

Maximise c,e F = b(c)− h(e) s.t. v(c, e) = v cmin ≤ c ≤ cmax

L = b(v)− h(e) −akin
v
>

(v − v(c, e)) −qmin
cint
>

(c− cmin) + qmax
cint
>(cmax − c)

∂cL = 0: 0 = −qcint E>c akin
v −qbnd

cint

∂eL = 0: 0 = −he Ee a
kin
v

By solving the equations (in the order 2 and 1), we obtain

akin
v = E−1

e he

E>c E−1
e he = qcint + qbnd

cint .

This yields the metabolite balance equation

E>c E−1
e he = qapp

cint
Metabolite balance (S4)

with the effective metabolite price qapp
cint

= qcint + qbnd
cint .

5. Growth optimisation In a metabolic pathway model (with enzyme levels as control variables), we maximise

the cell growth rate (a variable that affects dilution and enzyme cost); fluxes must be stationary; rate laws must

be respected; metabolite levels must satisfy physiological bounds.
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Maximiseλ,v,c,e F = b(λ)− h(e, λ) s.t. Nintv − λ c = 0 v(c, e) = v cmin ≤ c ≤ cmax

L = b(λ)− h(e, λ) wint
r
>

(Nintv − λ c) −akin
v
>

(v − v(c, e)) −qmin
cint
>

(c− cmin)

+ qmax
cint
>(cmax − c)

∂λL = 0: 0 = bλ − hλ −cwint
r

∂vL = 0: 0 = 0 +N>int w
int
r −akin

v

∂cL = 0: 0 = 0 −λwint
r E>c akin

v −qbnd
cint

∂eL = 0: 0 = −he 0 Ee a
kin
v

By solving the equations (in the order 4, 3, 2, and 1), we obtain

akin
v = E−1

e he

λwint
r = E>c E

−1
e he − qbnd

cint

E−1
e he = N>int w

int
r

bλ − hλ = c ·wint
r .

This yields the economic balance equations

N>int w
int
r = akin

v Reaction balance

E>c akin
v = qapp

cint
Metabolite balance

bλ − hλ = c ·wint
r Growth balance equation (S5)

where akin
v = E−1

e he and, this time, qapp
cint

= qbnd
cint + λwint

r . This time we have no term bv. Note that third

equation determines a scaling of all economic variables; if the scaling does not matter to us, we can ignore this

equation, and c need not be known. In the metabolite balance, we find the effective metabolite price qbnd
cint +λwint

r .

The five different problems shown lead to very similar balance equations. However, these are only a few examples.

By exchanging constraints and optimality criteria or by considering multi-criteria optimisation, we can construct

many more variants – but the balance equations remain the same.

6. Resource balance analysis (maximal growth) To obtain a general linear RBA model, we slightly modify

the previous optimality problem. Now enzymes are not mentioned explicitly, but included in the compound vector

c. Again, we maximise the growth rate, where fluxes must be stationary (“mass balance constraint”); linear ca-

pacity constraints must be satisfied (“capacity constraint”); weighted sums of metabolite levels must be bounded

(“density constraint”)

Maximiseλ,v,c F = λ s.t. Nintv − λ c = 0 −Er c ≤ v ≤ Ef c cmin ≤ Dc ≤ cmax

L = λ wint
r
>

(Nintv − λ c) −ar
v
>(v + Er c) −pmin

d
>

(Dc− cmin)

+af
v
>

(Ef c− v) +pmax
d
>(cmax −Dc)

∂λL = 0: 0 = 1 −cwint
r

∂vL = 0: 0 = 0 +N>int w
int
r −av

∂cL = 0: 0 = 0 −λwint
r E> av −D> pd

where av = af
v + ar

v, pd = pmin
d + pmax

d , and where the state-specific matrix E contains the elements of Ef for

reactions that run in forward direction, and the elements of −Er for reactions that run in backward reaction (and

unspecified values for inactive reactions). Again we have no term bv. Note that for each reaction l, af
vl

or ar
vl

can be non-zero, but not both at the same time. Moreover, as shown in , every active reaction will hit its capacity

constraint, so we obtain sign(av) = sign(v) (both for active and inactive reactions). By solving the equations
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(in the order 2,3,1), we obtain the economic balance equations

N>int w
int
r = av Reaction balance

E> av = D> pd + λwint
r Metabolite balance

c ·wint
r = 1 Scaling of economic variables (S6)

In operator notation, the equations read

wint
r �v = av Reaction balance

av©c = pd /c + λwint
r Metabolite balance

wint
r · c = 1 Scaling of economic variables (S7)

Given a solution of our optimality problem (with known flux directions and active density constraints), we may

use these equations to determine the economic variables (see SI S2.7).

7. Resource balance analysis (fixed growth) We can also consider RBA problems at a fixed growth rate, and

with an optimisation of some linear objective bv · v − qc · c:

Maximiseλ,v,c F = bv · v − qc · c s.t. Nintv − λ c = 0 −Er c ≤ v ≤ Ef c cmin ≤ Dc ≤ cmax

L = bv · v − qc · c wint
r
>

(Nintv − λ c) −ar
v
>(v + Er c) −pmin

d
>

(Dc− cmin)

+af
v
>

(Ef c− v) +pmax
d
>(cmax −Dc)

∂vL = 0: 0 = bv +N>int w
int
r −av

∂cL = 0: 0 = −qc −λwint
r E> av −D> pd

where av = af
v + ar

v and pd = pmin
d + pmax

d as before. Again, by solving the equations (in the order 2,3,1), we

obtain the economic balance equations

N>int w
int
r + bv = av Reaction balance

E> av = qapp
cint

Metabolite balance (S8)

where, this time, qapp
cint

= qc + D> pd + λwint
r .

S2 Metabolic optimality problems and economic balance equations

To maximise the metabolic fitness under the constraints of a kinetic model, we can use, as the free variables,

either enzyme levels or metabolite levels and fluxes. In this section, I explain the resulting optimality problems

and discuss some variants. For each problem, the optimality conditions are derived and translated into economic

balance equations.

S2.1 Flux optimisation

In flux optimisation, one may minimise a (flux-dependent) benefit-cost difference, maximise benefit at a fixed

cost (as in FBA with molecular crowding [1] or in classical FBA with a constant cost term), or minimise cost at

a fixed benefit (e.g. by minimal-flux FBA, or flux cost minimisation as in section S2.1). Here, we consider the

latter option. We use the metabolic fluxes as free variables, constrain them to be stationary and to reach a given

benefit value (z · v ≥ b′ or, for simplicity, z· = b′), and minimise a flux cost function (see Figure S1). The flux
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cost may be a linear or nonlinear function of the fluxes, and its derivatives avl = ∂a/∂vl must have the same

signs as the fluxes vl, i.e. avl vl > 0 whenever vl 6= 0. At vl = 0, the cost function has a kink and the derivative

avl is undefined. Flux cost minimisation has been described in the main article. Let us consider three variants:

1. Minimising a weighted sum of fluxes As a simple form of FCM, some variants of FBA use the minimisation

of a weighted sum of fluxes a =
∑
l a
′
vl
|vl| (with constant weights a′vl). Assuming positive fluxes (assuming

that the flux directions are known, and orienting the reactions accordingly in our model), we obtain the

derivatives ∂a/∂vl = a′vl , and the economic reaction balance reads

a′vl = bvl + ∆wl (S9)

for all active fluxes, where bvl = ωb zl and ωb is a Lagrange multiplier.

2. Minimising enzyme cost as a function of fluxes The kinetic flux cost is an apparent flux cost function

(see Figure S1, bottom) that describes the minimal metabolite and enzyme costs a cell needs to invest to

realise the fluxes. It can be defined based on a kinetic model, and be computed by a cost minimisation in

metabolite space (section S2.3). The kinetic model defines a relation between enzyme levels, metabolite

levels, and fluxes. Our aim is to find a flux distribution that minimises the total enzyme cost under the

given flux constraints. We first consider an optimisation at predefined metabolite levels. In this case, the

flux cost reads a(v) =
∑
l hel el =

∑
l hel

vl
kl

, and its derivatives, with the predefined metabolite profile, read

∂a/∂vl =
hel

kl
. We obtain the same reaction balance as before, but with

hel

kl
replacing . If we optimise the

metabolite levels as part of the optimality problem, we obtain the same formula; we just need to insert the

optimal metabolite levels (to be computed by ECM).

3. Thermodynamic constraints on flux directions derived from a flux cost minimisation problem Economic

balance equations and energetic balance equations can be derived from the same variational principle. In a

chemical reaction system, all active reactions produce entropy. This fact implies a relation between flux

directions and chemical potential differences (or “thermodynamic driving forces”): fluxes must lead from

higher to lower chemical potentials. This constraint, which is used in some variants of FBA, follows from

a principle of minimal entropy production (or, in systems at given pressure and temperature, of dissipation

of Gibbs free energy). Interestingly, this principle is formally equivalent to a flux cost minimisation problem.

We just need to use Rayleigh’s dissipation function, describing heat production in a chemical system, as an

objective to be minimised, while constraining the fluxes to a given external production of Gibbs free energy.

The optimality condition states that there must be chemical potentials µi satisfying sign(v) = −sign(∆rµ) in

all active reactions. The existence of these chemical potentials excludes certain flux cycles and put constraints

on the flux directions.

S2.2 Enzyme optimisation

In enzyme optimisation as described by Eq. (??) (i.e. cost-benefit optimisation in enzyme space), the enzyme

levels are treated as control variables, and the aim is to maximise a fitness function given by the difference between

metabolic benefit (scoring fluxes and metabolite levels) and enzyme cost. Enzyme optimisation can be used to

design optimal enzyme profiles in metabolic engineering or to better understand enzyme usage in naturally evolved

metabolic pathways. For examples in the literature, see [2, 3, 4, 5]. The optimisation includes constraints: the

rate laws must be satisfied, the metabolic fluxes must be stationary, and the enzyme levels, metabolite levels or

fluxes may be constrained (e.g. to avoid negative values or to impose upper and lower bounds). In models with

moiety conservation, the concentrations of conserved moieties can also be predefined. Each single constraint will

give rise to an economic variable, which will appear in the balance equations. Let us see this in detail.
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Enzyme cost h(e)
Necessary

Metabolite cost q(c)

Metabolite levels c

levels e(c,v)

Stationary fluxes

Kinetic flux cost a(v)

Flux benefit b(v)

Stationary fluxes

Flux benefit b(v)

Flux cost a(v)

Optimise stationary fluxes v (accounting for the minimum resulting cost from metabolites and enzymes)

Special case: kinetic flux cost (representing enzyme and metabolite cost in a kinetic model)

enzyme

Fluxes v

Fluxes v

Figure S1: Flux cost minimisation. Top: flux cost minimisation at a fixed flux benefit and with stationarity
constraint for fluxes. Bottom: A kinetic model can be used to define an apparent, kinetics-based flux cost
function that represents enzyme and metabolite costs in. The calculation of a flux cost entails an optimisation of
metabolite and enzyme levels given the chosen fluxes. The grey box represents the optimisation shown in Figure
S3.

1. Optimality problem In enzyme optimisation (see Figure S2), we consider a kinetic model with rate laws

vl = vl(c,u), control variables ul, a metabolic objective1 b(v, c), and a cost function h(u). The vector u may

contain enzyme levels or other kinds of control variables, such as mRNA levels; however, the control variables must

appear as prefactors in rate laws. We refer here to enzyme levels as the paradigmatic example. For generality,

we assume that our model contains conserved moieties. This means to things: the values of the conserved

moieties need to be fixed, and the metabolic dynamics concerns only a subset of the internal metabolites, called

independent internal metabolites2. The stationarity condition for these metabolites reads Nind v = 0, and moiety

conservation is formulated as Gc = c′cm (with a predefined vector c′cm of conserved moiety concentrations). The

optimality problem reads

Maximise b(v, c)− h(u) with respect to v, c,u

subject to Nind v = 0, v(c,u) = v, c′cm = Gc. (S10)

2. Optimality conditions Using Lagrange multipliers (in vectors ωϕ, ωv, and ωcm), we can rewrite the

optimality problem as

Maximise f∗ = b(v, c)− h(u) + ω>ϕNind v + ω>v [v(c,u)− v] + ω>cm [c′cm −Gc]

with respect to v, c,u. (S11)

To obtain necessary optimality conditions, we take the derivatives with respect to vl, ci, and ul and set them to

1This combined metabolic objective may represent a difference b(v)− q(c) of a flux benefit and a metabolite cost.
2In models with conserved moieties, the economic potentials of dependent metabolites can be set to zero. Since the choice of

dependent metabolites depends on the model formulation, the is some aribtrariness in this choice, related to a kind of gauge symmetry.
This also concerns other optimality problems, including flux cost minimisation. However, to keep things simple, this complication is
only considered here.

7



External

metabolite levels x

Conserverd

moiety concentrations

Enzyme cost h(e)

Enzyme benefit g(e)

Enzyme levels e

Flux benefit b(v)

Metabolite

levels c

Fluxes v

Metabolite cost q(c)

Optimise enzyme levels (which determine fluxes and metabolite levels)

Figure S2: Enzyme optimisation. In enzyme optimisation(see section S2.2), we maximise the benefit-cost differ-
ence as a function of enzyme levels. Alternatively, one may maximise flux (as a benefit function) at a fixed total
enzyme level (as a cost) [6], or to minimise enzyme cost at fixed fluxes [7].

zero. With the abbreviations

b?vl =
∂b

∂vl
, b(c)

ci =
∂b

∂ci
, Evl

ci =
∂vl
∂ci

, Evl
ul

=
vl
ul
, hul

=
∂h

∂ul
, (S12)

we obtain the optimality conditions (for derivatives in row vectors)

0 =
∂f∗

∂v
= b?v

> + ω>ϕ Nind − ω>v

0 =
∂f∗

∂c
= b>c + ω>v Ec − ω>cm G

0 =
∂f∗

∂u
= −h>u + ω>v Eu. (S13)

3. Symbols for the economic variables To write the optimality conditions (S13) as economic balance equations,

we define the economic variables bvl (direct flux values), wri (economic potentials), and yint
ci (economic loads).

We first define the new names wr,ind = ωϕ;wv = ωv;ycm = ωcm and then define:

1. The rows of Nind and the elements of wr,ind refer to the independent internal metabolites: we define the

vector wint
r for all internal metabolites. Its components for the independent metabolites stem from wr,ind,

while the component for dependent metabolites vanish. Using this vector, we can now rewrite wr,ind
>Nind =

wint
r
>
Nint.

2. The vector b?v is split into a sum b?v = bv + Next w
ext
r , with direct flux values bvl and external economic

potentials wext
ri . Merging wint

r and wext
r into a vector wr, referring to all metabolites, we have different ways

to split the flux values into different terms:

b?v + N>ind wr,ind = bv + N>ext w
ext
r + N>int w

int
r = bv + N>all wr = bv + ∆wr. (S14)

3. To capture the constraints for conserved moieties, we define the concentration value vector wc = G> ycm,

and for models without conserved moieties, we obtain wc = 0.

4. Economic rules We insert the new variables into Eq. (S13), transpose and rearrange the equations, and

obtain the economic rules

wv = N>all wr + bv (S15)

wc = E>c wv + bc (S16)

hu = E>u wv. (S17)
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For reasons of elegance, these equations (and also the following ones) can be written in a form that resembles field

equations from physics. We define the network operators �v = Nint (for reactions),©c = Ec (for metabolites),

and©e = Eu (for enzymes), which act on row vectors on their left. They are called operators because they

translate the fitness values between production rates and reaction rates and between reaction rates and metabolite

or enzyme concentrations. Using these operators, we obtain the economic rules in the simple form

wv = �v wr + bv

wc = ©c wv + bc

hu = ©e wv. (S18)

The first rule relates the flux values wv to the flux gain bv and to the economic potentials (production values)

wr of adjacent metabolites, where metabolites and reaction are linked by stoichiometric coefficients (compare

Eq. (S14)). The second rule relates the concentration value wc to the concentration gain bc and to the flux

values wv of adjacent reactions, where reactions and metabolite are linked by reactant elasticities. The economic

loads in the vector yint
c = wc−bc describe the metabolites’ indirect influences on the metabolite’s indirect value

(i.e. the metabolic objective). According to rule (S16), the loads are given by yint
c = E>c wv. The third rule

relates the flux values wv to the enzyme prices of adjacent enzymes (linked by enzyme elasticities Evl
ul

= vl
ul

).

The term akin
vl

= hul
ul/vl on the right has the role of a flux price.

5. Balance equations By combining the rules in pairs, we obtain three balance equations:

1. By inserting rule (S15) into rule (S16), in the form yint
c = w>v Ec, we obtain the relationship

yint
c = E>c [bv + N>all wr] (S19)

between economic loads and potentials

2. By equating rules (S15) and (S17), we obtain the reaction balance

bv + N>all wr = akin
v , (S20)

with kinetic flux price vector akin
v = u/v ◦ hu.

3. By combining rules (S16) and (S17) and using the identity yint
c = E>c wv, we obtain the metabolite balance

yint
c = E>c akin

v . (S21)

6. Optimality conditions in scaled form We have obatined the economic balance equations in “value” form.

To obtain balance equations in benefit form, we multiply the rules (S15) and (S17) by the fluxes vl, and rule

(S16) by the concentrations ci. Introducing the abbreviations zvl = wvl vl (“local flux benefit”), zci = wint
ci ci,

and hul
= hul

ul (“ partial enzyme cost”), and noting that Dg(c)Ec
>Dg(v) = Ev

c , we obtain the equations

b?v = v ◦ [bv + N>all wr]

g
c

= c ◦ [bv + Ec wv]

b?v = u ◦ hu. (S22)

These equations represent the reaction and compound rules in scaled form, as well as the equality between enzyme

partial benefits and partial enzyme costs. By combining them in pairs as above, we obtain the scaled balance
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equations.

c ◦ yint
c = Ev

c
>Dg(v) [bv + N>all wr]

u ◦ hu = v ◦ [bv + N>all wr]

c ◦ yint
c = Ev

c
> hu. (S23)

7. Additional constraints on enzyme levels, fluxes, concentrations, and production rates What if more

constraints are added to the optimality problem. With additional equality constraints on enzyme levels (Mu u =

ufix), fluxes (Mv v = vfix), concentrations (Mc c = cfix), and external production rates (Mx Next v = vprod,fix),

we obtain the optimality problem

Maximise b(c,v)(v, c)− h(u) + ω>ϕ [Nind v − 0] + ω>v [r(c,u)− v] + ωcm
> [c′cm −Gc]

+β>u [Mu u− ufix] + β>v [Mv v − vfix] + β>c [Mc c− cfix] + β>ψ [Mx Next v − vprod,fix](S24)

with respect to v, c, and u. By taking derivatives with respect to v, c, and u, and setting them to zero, we

obtain

0 = b?v
> + ω>ϕ Nind − ω>v + β>v Mv + β>ψ Mx Next

0 = b>c + ω>v Ec + ωcm
>G + β>c Mc (S25)

0 = −h>u + ω>v Eu + β>u Mu.

To account for the new constraints, we introduce economic variables as above, define the burden and gain terms

hu,con = −Mu
>βu

b?v,con = Mv
>βv

bc,con = Mc
>βc

wext
r,con = Mx

> βψ, (S26)

and obtain

0 = b?v
> + b?v,con

> + wr,ind
>Nind + wext

r,con
>
Next −w>v

0 = b>c + b>c,con + w>v Ec + y>cm G (S27)

0 = −h>u − h>u,con + w>v Eu.

By incorporating the new terms into the economical variables3, we obtain simple equations of the form (S13).

The same extra terms will also appear in models with lower and upper bounds instead of equality constraints.

In this case, their signs depend on the type of bound hit (positive for lower bounds, negative for upper bounds,

and the elements for inactive bounds will vanish) (see SI section S3.1). For example, the gain vectors b?v,con or

bc,con contain negative values where the corresponding variables (e.g. a flux, for a flux gain) hit an upper bound.

An upper bound resembles an additional cost function, which excludes high values. Therefore, an active upper

bound has the same effect as a side objective that punishes high values: both of them keep the variable low.

Similarly, an active lower bound resmebles a benefit function: it keeps the variable high.

3To ensure that the additional terms have unique values and a clear interpretation, redundant constraints in the optimality problems
must be avoided. For example, if there is an upper bound on an export flux, there should not be a second bound on the production
rate of the external substance. Redundant bounds are no problem for solving the optimality problem, but the values of the Lagrange
multipliers related to these bounds will be underdetermined, which makes it hard to interpret them. Mathematically, an optimality
problem with redundant constraints does not satisfy the conditions for applying the Karush-Kuhn-Tucker optimality conditions (see
SI section S3.1).
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Fluxes v Enzyme demand e(c,v) Enzyme cost h(e)

Metabolite levels c

(Enzymatic) metabolite

cost q(c) = h(e(c))

Metabolite cost q(c)

Given fluxes v, optimise metabolite levels (which determine enzyme levels)

Figure S3: Cost minimisation in metabolite space with given fluxes to be realised. The metabolite levels are
scored by a cost function q(c) comprising the a direct metabolite cost and an indirect enzymatic cost. The
enzymatic cost in metabolite space is defined as follows. At the desired fluxes, each metabolite profile defines
a corresponding enzyme profile and therefore an enzyme cost. The enzyme costs can be written as a function
of metabolite level. It is mathematically convenient to run the optimisation in log-metabolite space (see section
S2.3).

S2.3 Metabolite optimisation

In cost minimisation in metabolite space (e.g. enzyme cost minimisation, ECM [7]), we predefine a flux vector v

and search for metabolite and enzyme levels that realise these fluxes in a cost-optimal way (see Figure S3). The

logarithmic metabolite levels (in a vector ln c) are treated as free variables, and since the fluxes are given, the

enzyme levels can be easily computed by inverting the rate laws. In the optimality problem, we minimise the sum

of direct and enzymatic metabolite cost:

Maximise − q(c)− qenz(c,v) with respect to c subject to cmin ≤ c ≤ cmax (S28)

The enzymatic cost qenz(c,v) = h(e(c,v)) describes the enzyme cost h(e) caused by the enzyme demand e(c,v)

that arises from a choice of metabolite levels. To ensure a solution (while assuming thermodynamically feasible

rate laws), we require that the fluxes must be free of thermodynamically infeasible cycles. There are different ways

to formulate this problem. In appendix S1, I treated the enzyme levels as independent variables and described the

relation between fluxes, metabolite levels, and enzyme levels by explicit constraints. We shall now see a different

derivation in which we consider a given effective cost, as a function of c and v. With this cost function q(c,v),

the optimality problem for c reads

Minimise q(c,v) with respect to c subject to cmin ≤ c ≤ cmax (S29)

Using Lagrange multipliers (in a vector bbnd
c ), we can write the optimality problem as

Minimise q(c,v) + blb
c · [cmin − c] + bub

c · [c− cmax] with respect to c, (S30)

and (after joining blb
c and bub

c into one vector), the optimality conditions for c become

qc = bbnd
c . (S31)

where qc = ∂q
∂c . For an enzymatic metabolite cost q(c,v) =

∑
l helel(c,v) =

∑
l

hel
vl

kl(c) , we can compute this

derivative:

∂q

∂ci
=

∂

∂ci

∑
l

hel vl
kl(c)

=
∑
l

hel vl
∂

∂ci

1

kl(c)
=
∑
l

hel vl
−1

(kl)2

∂kl
∂ci

= −
∑
l

hel vl
(kl)2 el

∂vl
∂ci

= −
∑
l

hel el
vl

Evlci . (S32)
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External

metabolite levels x

Conserverd

moiety concentrations
Metabolite

levels c

Fluxes v

Dilution rate

Enzyme levels e Enzyme cost h(e)

Growth benefit g(e)

Physiological constraints

Optimise enzyme levels and dilution rate to maximise the difference of growth benefit and enzyme cost

Figure S4: Growth maximisation, with a cost term for enzyme usage.

By inserting this expression into Eq. (S31) and defining the kinetic flux price akin
vl

=
hel

el
vl

, we obtain the metabolite

balance

−
∑
l

akin
vl
Evlci = bbnd

ci . (S33)

The effective metabolite gains bbnd
ci arise from the Lagrange multiplier associated with lower and upper bounds.

If the cost function q(c,v) contains a direct metabolite cost qmet, the gradient qmet
c will appear as an extra term

on the left. Usually, metabolite benefits are considered instead of metabolite costs: if we consider b
(c)
ci = −qmet

ci

and rearrange the equation, we obtain the metabolite balance

−bbnd
ci − b

(c)
ci =

∑
l

akin
vl
Evlci . (S34)

Since Eq. (S28) contains no constraints on conserved moieties, the left-hand side represents the effective economic

load yint
ci .

S2.4 Growth optimisation

The economic balance equations describing metabolism can be derived by assuming that cells need to grow fast

while keeping metabolism in a functional state, despite the dilution of compounds. The model is shown in Figure

S4. In a growing cell, the state of a metabolic pathway (fluxes and metabolite levels) depends on enzyme levels

el and dilution rate λ. Instead of varying the growth rate as a parameter, we score it as an optimality objective.

We assume that fitness is a function b(λ) of the dilution rate λ, minus a cost term for enzyme production,

(e.g. h = λ
∑
l el)

4. As shown in the appendix, we obtain the usual balance equations, as well as an extra

equation for the dilution rate:

bλ = hλ + wint
r · c, (S35)

where hλ = ∂h/∂λ. The balance equation (S35) shows how the direct gain bλ from higher growth is balanced

with growth-related losses of enzyme and with metabolism. Interestingly, we obtain, again, the same reaction

balanceand metabolite balanceas in the case of simple metabolic obectives. As shown in SI section ??, this fact

can be used to replace growth objective of a whole-cell model, effectively, by apparent metabolic objectives for

models of pathways within that cell. These objectives represent inequality constraints from the original model. If

4The enzyme cost terms can describe the fact that enzymes are produced and maintained by the cell, which reduces growth.
Instead of describing these effects explicitly (as in whole-cell models), we summarise them in an effective cost term to keep our
present model simple.
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Enzyme cost h(e)

Enzyme benefit g(e)
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Metabolite cost q(c)

Optimise amplitudes (which determine flux and metabolite amplitudes)

Figure S5: Optimisation of enzyme rhythms.

we replace the growing cell model by a simple metabolic pathway model, we can re-interpret these vectors as the

derivatives b?v = ∂b/∂v and bc = ∂b/∂c of some hypothetical objective b(v, c).

We now derive a formula for the total enzyme partial cost in the metabolic network of a growing cell. Noting

that c = 1
λ vdil, the term wint

r · c can be written as

wint
r · c =

1

λ
wint

r · vdil =
1

λ
wint

r

>
Nint v =

1

λ
∆wint

r · v. (S36)

Inserting this into Eq. (S35) and summing over enzymatic (“enz”) and non-enzymatic (“non”) reactions separately,

we can split the marginal growth benefit bλ into four contributions:

bλ = hλ +
1

λ

∑
l∈enz

[∆wint
rl

+ b?vl ] vl︸ ︷︷ ︸
hu

+
1

λ

∑
l∈non

[∆wint
rl

+ b?vl ] vl −
1

λ

∑
l

b?vl vl, (S37)

. The first sum yields the usual enzyme point cost hu = hu ·e of the metabolic network, divided by λ. Multiplying

Eq. (S37) by λ and solving for hu, we obtain the formula for the total partial enzyme cost in a growing cell:

hu = λ(bλ − hλ)︸ ︷︷ ︸
growth point fitness

+ b?v · v︸ ︷︷ ︸
flux benefit

− [∆wr
non + bv,non] · vnon︸ ︷︷ ︸

flux partial cost of non-enzymatic reactions

. (S38)

Without non-enzymatic reactions, the total partial enzyme cost is balanced by the growth point fitness. However,

if the non-enzymatic reactions will typically have a negative partial benefit (if they destroy valuable compounds

and do not produce more valuable ones), and so the last term will further increase the partial enzyme cost.

S2.5 Optimal enzyme rhythms

The economics of periodic metabolic behaviour can be described by complex economic variables (e.g. enzyme

demands and metabolites’ economic potentials), which satisfy their own balance equations. These variables and

balance equations can be derived by posing an optimality problem for periodic enzyme amplitudes with the help

of Lagrange multipliers. The optimisation (see Figure S5) resembles an optimisation of static enzyme levels. We

consider a kinetic model under periodic perturbations, described by periodic profiles

x(t) = xref + Re(x̃ ei ω t)

u(t) = uref + Re(ũ ei ω t) (S39)
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of external enzyme and metabolite levels. With these profiles as inputs, the system equations

∂c(t)

∂t
= Nint v(t)

v(t) = v(c(t),x(t),u(t)) (S40)

lead to periodic concentration and flux profiles, which can be approximated by

c(t) ≈ cref + Re(c̃ ei ω t)

v(t) ≈ vref + Re(ṽ ei ω t). (S41)

To comply with the system equations, the amplitude vectors c̃ and ṽ must satisfy

c̃ = i ωNint ṽ

ṽ ≈ E̊ṽc̃ c̃ + E̊ṽx̃ x̃ + E̊ṽũ ũ, (S42)

with effective periodic elasticity matrices E̊·· referring to the periodic metabolic state around which we expand

(see SI of [8]). With complex amplitude vectors c̃, ṽ, x̃, and ũ as physical variables, we now introduce the

corresponding economic variables and derive their economic balance equations. First, we define the fitness

function f(c,v,x,u) = b(c,v,x)− h(u) and consider the optimality problem5

Maximize b(c̃, ṽ, x̃)− h(ũ) with respect to c̃, ṽ, ũ

subject to Nint ṽ = i ω c̃, E̊ṽc̃ c̃ + E̊ṽx̃ x̃ + E̊ṽũ ũ = ṽ, 0 = Gc̃ (S43)

with a predefined amplitude vector x̃ describing the external perturbations. For the three constraints, we introduce

the vectors of complex-valued Lagrange multipliers6 ω̃ϕ, ω̃v, and ω̃cm. We thus need to maximise the Lagrangian

b(c̃, ṽ, x̃)− h(ũ) + Re(ω̃ϕ · [Nint ṽ − i ω c̃]) + Re(ω̃v · [−ṽ + E̊ṽc̃ c̃ + E̊ṽx̃ x̃ + E̊ṽũ ũ])− Re(ω̃cm ·Gc̃) (S44)

with respect to the vectors c̃, ṽ, ũ and with a suitable choice of ω̃ϕ, ω̃v, ω̃cm. To do so, we take the derivatives

with respect to c̃, ṽ, and ũ and set them to zero; and obtain

0 =
∂

∂ṽ
[b(c̃, ṽ, x̃) + Re(ω̃ϕ ·Nint ṽ) + Re(ω̃v · [−ṽ])]

0 =
∂

∂c̃

[
b(c̃, ṽ, x̃) + Re(ω̃ϕ · [−i ω c̃]) + Re(ω̃v · E̊ṽc̃ c̃)− Re(ω̃cm ·Gc̃)

]
0 =

∂

∂ũ

[
−h(ũ) + Re(ω̃v · E̊ṽũ ũ)

]
, (S45)

where irrelevant terms have been omitted. Since ω̃ϕ · [−i ω c̃]) = ω [i ω̃ϕ] · c̃), this yields

0 =
∂b

∂ṽ
+ N>int ω̃ϕ − ω̃v

0 =
∂b

∂c̃
+ (E̊ṽc̃ )

†ω̃v + i ω ω̃ϕ −G> ω̃cm

0 = −∂h
∂ũ

+ (E̊ṽũ)† ω̃v. (S46)

5In this optimality problem, we already consider the linearised reaction rates instead of the actual (unknown) function ṽ(c̃, x̃, ũ).
However, since derivatives are taken in the following step, this does not change the end result.

6Complex-valued Lagrange multipliers can be defined as follows. The Lagrange term for complex-valued control variables in a

vector z and for constraints in a vector f(z) can written separately for real and imaginary parts. It reads λ> ∂f
∂Re(z)

+λ′> ∂f
∂Im(z)

with

real-valued Lagrange multiplier vectors λ and λ′. By joining these vectors into one complex-valued Lagrange vector ωϕ = λ+ iλ′,

also the Lagrange terms can be merged into one term Re(ωϕ · ∂f
∂z

).
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Now we define the complex-values economic variables bṽ = ∂b
∂ṽ

, bc̃ = ∂b
∂c̃

, wc̃ = ω̃ϕ, ∆wc̃ = N>int ω̃ϕ, ycm
c̃ =

ω̃cm, gc̃ = G> ω̃cm, yc̃ = gc̃ − bc̃, and wṽ = ω̃v. Inserting them, we obtain the balance equations

wṽ = bṽ + ∆wc̃

yc̃ − i ωwc̃ = (E̊ṽc̃ )
†wṽ

hũ = (E̊ṽũ)†wṽ. (S47)

These equations resemble our balance equations for optimal steady states, with a number of small differences.

The economic variables are now complex-valued, because they do not refer to variations of static values but to

variations of complex amplitudes. Accordingly, the elasticities used are not the usual elasticities derived from the

rate laws, but “periodic” elasticities defined for oscillatory metabolic state. Finally, there is a frequency-dependent

extra term i ωwc̃. Interestingly, a similar term −λwci appears in the economic balance equations for metabolic

models with dilution (e.g. models of steadily growing cells with cell growth rate λ). We can obtain this dilution

term from Eq. (S47) by choosing an imaginary frequency ω = i λ, i.e. replacing the oscillations ei ω t by decreasing

exponentials e−λ t.

S2.6 Models of growing cells

Finally, we consider detailed whole-cell models, formulated as ordinary differential equations7. The models

may be coarse-grained or fine-grained, the compounds can represent metabolites and macromolecules, and the

model can contain other dynamic variables describing, for example, compartment sizes, pH values, or electrostatic

potentials. Let us consider a general form of such models, which can cover kinetic metabolic models, constraint-

based metabolic models, and whole-cell models as special cases [9, 10]. Even if our model is kinetic, constraint-

based whole-cell models can be formulated similarly. A kinetic models in its steady state, written with explicit

constraints, yield the same constraints as a constraint-based model (and some more). This is why some of the

optimality conditions derived here will readily apply to constraint-based whole-cell models such as in Resource

Balance Analysis [11].

As dynamical variables, we consider the model contains compound concentrations c, metabolic fluxes v, fixed

external variables x, variables p determined by algebraic equations, variables q determined by differential equations.

Moreover, there are control variables u, for example, kinetic constants describing allosteric or transcriptional

enzyme regulation. The growth rate λ, which also determines dilution, can appear as a dynamic variable, control

variable, or fixed parameter (e.g. in a chemostat). The model dynamics is given by the system equations

v = ηv(c,p,q,x,u)

p = ηp(c,p,q,x,u)

dq

dt
= ψ = ηq(c,p,q,x,u)

dc

dt
= ϕ = Nv − λ c. (S48)

To define an optimality problem, we score the cell state by a fitness function f , which can depend on all variables.

Given external conditions x, the aim is to find a control vector u and a growth rate λ that allow for a steady

state with a (locally) maximal fitness.

We formulate this as an optimality problem (see Figure S6). Given the external conditions x, maximise f(v, c,p,q,x,u, λ)

7There are still more general types of models, e.g. partial differential equation systems, delay differential equations, or stochastic
processes.
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Figure S6: Growth optimisation in kinetic whole-cell models. Top: In the original model, the control variables are
biochemical paramaters (e.g. kinetic constants in gene regulation systems). Stationary fluxes, metabolite levels,
and enzyme levels are state variables determined by the model dynamics. Bottom: the optimality problem after
its reformulation. Now all variables are treated as control variables, and their physical relationships are encoded
as explicit constraints.

with respect to u and λ such that

∃v, c,p,q : v = ηv(c,p,q,x,u)

p = ηp(c,p,q,x,u)

0 = ηq(c,p,q,x,u)

0 = Nv − λ c. (S49)

In addition, there may be lower and upper bounds on v, c,p, and q, but for simplicity, we shall not consider such

bounds. To write the problem in expanded form, we treat all variables v, c,p,q, u, and λ as free variables and

formulate all dependencies as explicit constraints (see Figure S6 bottom):

Given external conditions x, find Lagrange multipliers (in vectors ωv,ωp,ωψ,ωϕ) such that

f(v, c,p,q,x,u, λ) + ω>v [ηv(c,p,q,x,u)− v]︸ ︷︷ ︸
from rate equation

+ω>p [ηp(c,p,q,x,u)− p]︸ ︷︷ ︸
from algebraic variables

+ ω>ψ ηq(c,p,q,x,u)︸ ︷︷ ︸
from variable stationarity

+ ω>ϕ [Nv − λ c]︸ ︷︷ ︸
from metabolite stationarity

(S50)

is locally maximal with respect to u,v, c,p,q, and λ. To obtain the necessary optimality conditions, we differen-
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tiate Eq. (S50) by v, c,p,q, u, λ and set the resulting derivatives (given in row vectors) to zero:

0 =
∂f

∂v
− ω>v + ω>ϕ N

0 =
∂f

∂c
+ ω>v

∂ηv
∂c

+ ω>p
∂ηp
∂c

+ ω>ψ
∂ηq
∂c
− ω>ϕ λ

0 =
∂f

∂p
+ ω>v

∂ηv
∂p

+ ω>p
∂ηp
∂p
− ω>p + ω>ψ

∂ηq
∂p

0 =
∂f

∂q
+ ω>v

∂ηv
∂q

+ ω>p
∂ηp
∂q

+ ω>ψ
∂ηq
∂q

0 =
∂f

∂u
+ ω>v

∂ηv
∂u

+ ω>p
∂ηp
∂u

+ ω>ψ
∂ηq
∂u

. (S51)

All derivatives in these formulae are fitness derivatives (e.g. ∂f/∂v) or coefficients that link neighbouring model

elements (e.g. reaction elasticities Ec = ∂v/∂c between concentrations and reaction rates). The Lagrange

multipliers (in the vectors ωv,ωp,ωψ,ωϕ) can be seen as economic variables, associated with the physical

variables v,p,ψ, and ϕ.

S2.7 Resource balance analysis

After solving an RBA problem (either maximising the growth rate, or optimisin a linear objective at given growth),

we can use the economic balance equations to compute the economic variables, i.e., the Lagrange multipliers

corresponding to our objective function. Let us focus on the first case, optimisation of growth. Knowing the

model structure, the optimal growth rate λ, and the flux pattern (active fluxes and flux directions in the optimal

state), we can solve the balance equations for wint
r , av, and pd. The concentrations c, in the last equation, are

only needed for scaling the entire set of economic variables. If the absolute scaling of economic variables does

not matter, we can ignore c and omit this last equation, solve only the first two equations, and obtain arbitrarily

scaled economic variables. IN any case, the flux pattern needs to be known to obtain the capacity matrix Ecap

and the signs of av. Furthermore, we need to know which density constraints are active, in order to require

positive values in pd for compounds involved in these density constraints. To solve the equations, we write them

as  N>int −I 0

−λI Ecap
> −D>

c> 0 0


 wint

r

av

pd

 =

 0

0

1

 (S52)

and consider the constraints sign(avl) = sign(vl) for all active reactions (and avl = 0 for all inactive reactions),

and pdj > 0 for all active density constraints (and pdj = 0 for all inactive ones). These are linear constraints

on our economic variables. Will there be a solution, and will it be unique? To check this, we remove all inactive

reactions vl = 0, irrelevant metabolites ci = 0, and inactive density constraints. Then, to yield a solution, the

remaining matrix on the left must have full column rank; and to yield a unique solution, it must be invertible.

This implies that the number of economic variables (columns) and equalities (rows) must be equal. The number

of variables is given by the total number of intracellular compounds, reactions, and active density constraints.

The number of rows in our matrix is the total number of reactions and (intracellularl) compound, plus 1. Thus,

if more than one constraint is active, the economic variables will for sure be underdetermined.

Let us see an example, one in which the economic variables can be uniquely determined. We consider a simple

cell model with reactions X → A→ B, where X is an external compound, the compounds A and B are internal

and diluted. A acts as the catalyst of reaction 1 and B acts as the catalyst of reaction 2.
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X A B

dildil

For the optimal solution, we assume that the two reactions show positive fluxes and that A and B hit the density

constraint d1 [A] + d2 [B] = dtot. We obtain the matrices

Nint =

(
1 −1

0 1

)
, Ecap =

(
k1 0

0 k2

)
, D = (d1, d2). (S53)

Thus, our balance equations read

(
1 0

−1 1

)
wint

r = av(
k1 0

0 k2

)
av =

(
d1

d2

)
pd + λwint

r

(c1, c2)wint
r = 1 (S54)

or, together, 
1 0 −1 0 0

−1 1 0 −1 0

−λ 0 k1 0 −d1

0 −λ 0 k2 −d2

c1 c2 0 0 0




w1

w2

b1

b2

pd

 =


0

0

0

0

1

 , (S55)

This matrix is typically invertible (unless some parameters vanish), and the economic variables can be directly

determined by matrix inversion.

S3 Proofs and derivations

S3.1 Signs of the Lagrange multipliers

Inequality constraints in optimality problems can be handled with Lagrange multipliers, whose signs reflect the

type of constraint (upper or lower bound) and which vanish when constraints are inactive. In optimality problems

with equality and inequality constraints, the solution must satisfy the following Karush-Kuhn-Tucker optimality

conditions [12]. We consider an optimality problem

Minimise F (x) with respect to x ∈ Rn subject to Gi(x) ≤ G′ and Hj(x) = H ′, where i ∈ {1, ..,m}, j ∈ {1, .., n}

We assume that the gradients of the active inequality constraints Gi(x) and the gradients of the equality con-

straints Hj(x) are linearly independent at the optimal point8 The optimality conditions (for an optimal point x∗)

8In metabolic economics, inequality constraints are typically used to put bounds on the model variables; these constraints are
mutually independent and independent of equality constaints representing stationarity or rate laws. Redundant bounds or duplicate
rate laws could cause problems, leading to non-unique values of the Lagrange multipliers.
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then read

0 = ∇F +
∑
i

µi∇Gi +
∑
j

λj∇Hj . (S56)

Primal feasibility requires that gi(x
∗) ≤ 0 and hj(x

∗) = 0 (i.e. the constraints must be satisfied for all i and

j). Dual feasibility requires that µi ≥ 0 and µi gi(x
∗) = 0 (complementary slackness condition) for all i. Let us

consider, as a special case, a variable with an upper bound xl ≤ xmax
l , i.e. xl − xmax

l ≤ 0. When this bound is

active, it is associated with a positive Lagrange multiplier. Accordingly, an active lower bound will be associated

with a negative Lagrange multiplier.

In metabolic economics, we often deal with maximisation instead of minimisation problems. To maximise of F ,

we can minimise −F , which leads to the optimality condition

0 = ∇F −
∑
i

µi∇Gi −
∑
j

λj∇Hj , (S57)

or, equivalently, to the original optimality condition

0 = ∇F +
∑
i

µ̄i∇Gi +
∑
j

λ̄j∇Hj , (S58)

where the signs of all Lagrange multipliers are switched: µ̄i = −µi, λ̄j = −λj , . Therefore, in maximisation

problems, lower bounds (of the form Gi(x) ≥ G′i) lead to positive Lagrange multipliers, while upper bounds (of

the form Gi(x) ≤ G′i) lead to negative Lagrange multipliers.

Minimisation problem for F Maximisation problem for F

Optimality condition 0 = ∇F +
∑
i µi∇gi + .. 0 = ∇F +

∑
i µ̄i∇gi + ..

Active lower bound G(x) ≥ G′ µ < 0 µ̄ > 0

Active upper bound G(x) ≤ G′ µ̄ > 0 µ̄ < 0

Inactive bound µ = 0 µ̄ = 0

S3.2 Partial flux costs of enzymatic flux cost functions

Given a flux cost function a(v), the flux partial cost is defined as the logarithmic derivative hul
= ∂a/∂ ln vl.

The enzymatic flux cost aenz, for example, represents the optimal enzyme cost in a kinetic model. With this

cost function, the flux partial cost is identical to the enzyme point cost hul
= ∂h/∂ lnul in enzyme cost-

benefit optimisation. We can see this as follows. We assume that our fluxes v are realised by a given kinetic

model, with reaction rates given by vl = ul kl(c) and enzyme levels ul, and an cost function h(u). For fixed

metabolite concentrations c, we define a flux cost a(v|c) by the enzyme cost needed to realise the fluxes:

a(v|c) = h(u(v)) = h(v/k(c)), where vectors are divided componentwise. For this flux cost function, we obtain

the flux partial cost

hul
=

∂aenz

∂vl
vl =

∂h

∂ul

1

kl(c)
vl =

∂h

∂ul
ul. (S59)

The equality holds for any metabolite levels chosen, and therefore also if metabolite levels are not predetermined

but to be optimised.
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S3.3 Economic balances in a growing cell

We consider a simple model of a growing cell (with growth rate λ) as shown in Figure ??. Since we maximise

growth at a limited biomass concentration, we can safely assume a positive concentration demand for biomass (but

not for the other compounds). Let us compute the economic variables for our example model. We use subscripts

for compounds (energy p, intermediate i, enzyme e, ribosome r, and biomass b) and reactions (catabolism C,

anabolism A, enzyme production E, ribosome production R). We assume that all stoichiometric coefficients have

numerical values of 1 and that there are no direct flux gains. Then the flux demands are given by the reaction

rules

wv
C = wint

e + wint
i − wext

glc

wv
A = wint

b − wint
e − wint

i

wv
E = wint

e − wint
p − wint

i

wv
R = wint

r − wint
p − wint

i , (S60)

where glc stands for glucose.The compound rules, on the contrary, read

0 = EpC w
v
C + EpA w

v
A + EpE w

v
E + EpR w

v
R − λwint

p

0 = EiC w
v
C + EiA w

v
A + EiE w

v
E + EiR w

v
R − λwint

i

0 = EeC w
v
C + EeA w

v
A + EeE w

v
E + EeR w

v
R − λwint

e

0 = ErC w
v
C + ErA w

v
A + ErE w

v
E + ErR w

v
R − λwint

r

hc
BM = EbC w

v
C + EbA w

v
A + EbE w

v
E + EbR w

v
R − λwint

b .

We can write these two equations in matrix form:


wv
C

wv
A

wv
E

wv
R

 =


1 1 0 0 0

−1 −1 0 0 1

−1 −1 1 0 0

−1 −1 0 1 0




wint
p

wint
i

wint
e

wint
r

wint
b

+


−1

0

0

0

wext
glc


0

0

0

0

hc
BM

 =


EpC EpA EpE EpR
EiC EiA EiE EiR
EeC EeA EeE EeR
ErC ErA ErE ErR
EbC EbA EbE ErB




wv
C

wv
A

wv
E

wv
R

− λ


wint
p

wint
i

wint
e

wint
r

wint
b

 ,

or briefly

wv = N>int w
int
r + N>ext w

ext
r

qcint = E>c wv − λwint
r ,

which we can solve for

wint
r = −([Nint Ec − λ I]>)−1[−qcint + E>x N

>
ext w

ext
r ].

Altogether, we have obtained nine linear equations for our flux values and five economic potentials. To solve them,

we need to assign numbers to the elasticities and to the external economic potentials (in this case, the potential of

glucose). For an illustrative example, we make simple assumptions. First, we assume that high-energy phosphates
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(in moles), as well as intermediates, enzymes, and ribosomes (in carbon moles) come in equal amounts, which

we set to 1. Due to dilution, and with our choice of concentrations and stoichiometric coefficients, the steady-

state fluxes must be proportional to (3, 1, 1, 1)>. When choosing the elasticities, we assume that p and i exert

scaled elasticities of 1/2 (partial saturation) if they appear as a substrate or as a product. The enzyme e and

the ribosome r would normally exert scaled elasticities of 1, but since each of them catalyses two reactions, the

elasticities are multiplied by a factor of 1/2. By multiplying the scaled elasticities by the fluxes (and assuming

concentrations of 1), we obtain the (transposed) unscaled elasticity matrix

Ec =


EpC EpA EpE EpR
EiC EiA EiE EiR
EeC EeA EeE EeR
ErC ErA ErE ErR
EbC EbA EbE ErB



>

=


−1 −1 1 0 0

1 1 1 0 0

1/3 1/3 0 1 0

1/3 1/3 0 1 0


Assuming a dilution rate λ = 1 and an external economic potential of 4 for the biomass (instead of 1, as above),

we obtain from Eq. (S61)

wint
r = −




−8/3 −8/3 1/3 1/3 1

−8/3 −8/3 1/3 1/3 1

0 0 0 0 1

−2 −2 1 1 0

0 0 0 0



>

− I



−1 


0

0

0

0

4

+ 0 ·


1

0

0

0

0





= −


−1/2 1/2 −1/4 −1/4 −1/4

1/2 −1/2 −1/4 −1/4 −1/4

0 0 −1 0 −1

3/2 3/2 −15/4 −19/4 −3/4

0 0 0 0 −1




0

0

0

0

6

 =


1

1

4

3

4

 . (S61)

The resulting flux demands read wv = (2, 2, 2, 1)>. These numbers are plausible: all flux demands are positive,

and all internal potentials are between 0 and the biomass potential (where actually, the enzymes have the same

potential as the biomass).
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