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ABSTRACT: Corpuscles are flexible geometric elements formed by regular triangles. Corpuscle 
elements can be joined, thus serving as building blocks for polyhedral chains and complex three-
dimensional structures. Here we describe a periodic three-dimensional corpuscle grid whose nega-
tive space consists of periodically arranged octahedra. As a recurrent local structure, the grid con-
tains the octahedron-centric corpuscle ball, an arrangement of 18 corpuscle elements surrounding an 
empty, octahedron-shaped space. Similarly, we construct corpuscle balls with empty cubes or icosa-
hedra at their centres and the according rotation symmetries. Both corpuscle balls can be extended 
to form periodic grids, but only if slight deformations of the edge lengths are allowed. The corpuscle 
grids and balls contain rigid, ring-like substructures, which stabilise them against deformation.
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1. INTRODUCTION Corpuscles are flexible 
geometric elements that can serve as building 
blocks  for  polyhedral  clusters,  chains,  and 
periodic  three-dimensional  grids  [1].  Each 
corpuscle  consists  of  several  triangles 
connected  by flexible  edges.  Between  these 
triangles,  there  may  be  open  slits,  called 
mouths,  which  permit  to  link  several  cor-
puscle elements. Some of the resulting larger 
structures allow for flexible collective move-
ments,  especially if  some of the mouths  are 
left  open.  Also  some  closed  structures,  like 
Goldberg's “Siamese double pyramid” icosa-
hedron [3], can flex with little deformation of 
the  triangle  edge  lengths.  Closed  rings, 
formed by chains of corpuscle elements,  are 
rigid unless the ring size (number of elements 
forming the ring) is a multiple of three [2]. All 
this becomes apparent in paper models. 
In  [1],  we  presented  a  grid-like  corpuscle 

structure that extends periodically throughout 
the  entire  three-dimensional  space.  Here  we 
describe this structure  in terms of two archi-
tectures: one architecture, the “positive” cor-
puscle grid itself,  is formed by the intercon-
nected corpuscles. The second architecture is 
formed  by  the  empty  “negative”  space  in 
between.  Its  shape  is  obtained  by  stacking 
regular solids and antiprisms. Antiprisms, like 
normal prisms, have regular polygons at their 
bottom and top faces, but tilted against each 
other and connected by regular triangles. The 
construction via the negative space does not 
account for possible flexibility,  but makes it 
easier to see if the structures can actually be 
periodic,  and  if  deformations  are  necessary. 
Taken together, both grids fill the space com-
pletely.  They are  separated  by  a  membrane 



consisting  of  triangles:  on  its  one  side,  it 
forms the corpuscle faces,  and on the other, 
the  band  of  triangles  surrounding  the  anti-
prisms. 

After developing this structure from a central 
empty octahedron, we present structures with 
other rotation symmetries based on an empty 
cube  or  icosahedron as  their  central  spaces. 
Also  these  structures  can  be  periodically 
extended, but slight deformations of the edge 
lengths  are  necessary.  To  build  the  positive 
corpuscle grid, we arrange corpuscle elements 
around the  empty centre  and add more  and 
more  elements  mouth  by mouth.  Instead  of 
continuing  this  process,  we  can  also  close 
open  mouths  by  triangles,  which  leads  to 
closed  corpuscle  balls.  Again,  this  may 
require  slight  deformations  of  the  edge 
lengths [2]. Exact structures, which consist of 
regular triangles, will be shown by computer 
drawings, while paper models show structures 
that  require  some  elastic  deformation.  Also 
the  membrane  between the  positive  and the 
negative space, which can contain regular or 
irregular triangles, is shown by paper models.

2. OCTAHEDRON-CENTRIC 
CORPUSCLE GRID 

The  construction  of  the  octahedron-centric 
corpuscle  grid  is  shown in  Figure 1a-e.  We 
first  consider  the  negative  grid,  in  which 
regular  octahedra  are  stacked along  their  3-

fold symmetry axes.  To understand its  local 
structure,  we  first  consider  a  central  octa-
hedron,  to  whose  faces  other  octahedra  are 
attached  face  to  face,  thus  giving  them  a 
different orientation (Figure 1 a-b). To each of 
these  octahedra,  we  could  attach  another 
octahedron, which then would have the same 
orientation  as  the  initial,  central  octahedron. 
This stacking can be continued, leading to  a 
periodic grid with cubic symmetry: we can see 
this by nothing that the first shell of octahedra 
fits exactly into a cubic elementary cell. Even-
tually, we obtain a periodic alternation of two 
types  of  octahedra:  those  which  are  sur-
rounded by octahedra at all of their faces (type 
A);  and  those  that  have  only  two  direct 
neighbours  (type  B).  For  reasons  that  will 
become clear below, the type B octahedra are 
also  called  “triangular  antiprisms”.  
The octahedron-centric grid can be seen as the 
negative  space  of  the  actual  corpuscle  grid, 
which is  shown now. Each corpuscle in the 
grid  consists  of  four  double-triangles  (“seg-
ments”), surrounding a central axis and with 
mouths in between them. These mouths leave 
space to fit in other corpuscle elements with 
the same shape, but different orientations. By 
adding  more  and  more  corpuscle  elements, 
shell  by shell  surrounding  the  central  solid, 
the structure can be extended to infinity. Posi-
tive  and  negative  grid  are  separated  by  a 
membrane consisting of triangles. This mem-
brane,  and  therefore  all  corpuscle  faces,  are 
formed by faces of the type B octahedra. 

Figure 1a-e: Negative space of the octahedron-centric corpuscle grid.  (a) An octahedron (type 
A) is surrounded by eight other octahedra in a different orientation (type B). The arrangement is 
shown from three different angles, highlighting the 4-fold (left), 3-fold (centre), and 2-fold (right) 
symmetry axes. (b) The surrounding octahedra are now attached to the faces of the central octa-
hedron. Their outer faces, and those pointing towards the central octahedron, will not be part of the 
membrane and are therefore not shown in the models from this row on.  (c) The arrangement of 
octahedra fits exactly into a cubic cell;  to show this  more clearly, pyramids are attached to the 
openings. If the cubic cell is periodically extended, we obtain a grid with cubic symmetry. (d) In this 
model, eight pyramids surround each cube corner, forming an octahedron in the same orientation as 
the central one. 
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Figure 1f-k: Positive space of the octahedron-centric corpuscle grid. Each type B octahedron 
forms the rear side of three corpuscles from the first shell and of three corpuscles from the second 
shell. Corpuscles of the first shell contact the vertices of the central octahedron; corpuscles from the 
second shell contact the edges of the central octahedron. Yet all corpuscles have open mouths. (f) 
The  corpuscles  from the  first  shell  are  completed.  (h)  The  corpuscles  of  the  second  shell  are 
completed, and their two remaining mouths are closed by additional triangles. The positive space 
has become an enclosed volume, and the membrane is now the surface of a polyhedron. We obtain 
the  octahedron-centric  corpuscle  ball  (h):  the  empty  octahedron  is  surrounded  by  six  regular 
corpuscles (each with 4 segments, all separated by mouths), which are connected by twelve more, 
slightly deformed corpuscles (1 segment plus 4 adjacent segments). Eight tunnels lead from the 
empty centre to the outside space. Since the octahedron in the centre is rigid, the octahedron ball 
and the entire corpuscle grid are rigid as well. (i) We choose a band of corpuscles that surrounds one 
of  the  tunnels  of  the  octahedron-centric  corpuscle  ball,  treat  the  first-shell  corpuscles  like  the 
second-shell corpuscles before, and extract a flexible substructure, comprising six elements with 5 
segments and 2 mouths each. (j) A longer band of elements is extracted from the ball, leading to a 
flexible ring structure, comprising 12 elements of the same type. (k) relates to (e): the structure 
shown extracts the fourth and fifth shell of corpuscles from an octahedron-centric grid. By closing 
the remaining mouths – towards the centre without an additional triangle, towards outside with one 
additional triangle – we obtain a branched polyhedron comprising 48 elements of the 4 th shell – cor-
puscles with four segments and  four mouths each - and 24 elements of the 5th shell – corpuscles 
with 5 segments and 2 mouths.

3. CUBE-CENTRIC CORPUSCLE GRID
By choosing a cube, instead of an octahedron, 
as our central empty space, we obtain another 
type of corpuscle grid. For the negative grid, 
we connect  cubes (type A solids)  by square 
antiprisms  (type  B  solids).  The  resulting 
module (Fig. 2d) fits almost, but not precisely, 
into an octahedron. If the fit was exact, these 
octahedra  could  be  stacked  periodically 
according  to  the  scheme  in  Fig.  1a-d.  In 
reality,  this  stacking is  only possible  with a 
slight  deformation  of  the  triangle  edge 

lengths.  This  time,  the  positive  space  is 
formed  by  corpuscle  elements  with  3  seg-
ments  each.  If we extract  and close a  basic 
corpuscle  arrangement,  we  obtain  the  cube-
centric corpuscle ball (Fig. 2g). It surrounds a 
central empty cube with empty antiprisms on 
all  faces,  which  serve  as  the  tunnels  to  the 
outside space. Moreover, the corpuscle struc-
ture contains corpuscle rings composed of 8, 
12,  or  16  elements  (Fig.  2h).  Among  these 
rings, only the 12-ring is flexible [2].

Figure 2: Cube-centric corpuscle grid. The construction is analogous to the one shown in Figure 
1, but based on an empty cube at the centre. (a-b) A cube is surrounded by a first shell of antiprisms. 
The  antiprisms  have  squares  at  their  top  and  bottom,  which  are  tilted  against  each  other  and 
connected by a ring of regular triangles. The structure in (d) fits almost, but not exactly, into a 
Platonic octahedron. Otherwise, it  could be periodically stacked according to periodic octahedra 
stacking shown in Figure 1. The closed structure in (g) is the cubic corpuscle ball described in [1]. 
(h) Three different ring structures contained in the cubic corpuscle ball, with 8, 12 and 16 units.
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4. ICOSAHEDRON-CENTRIC 
CORPUSCLE BALL
To  create  a  corpuscle  ball  with  icosahedral 
symmetry,  we surround an icosahedron by a 
shell of octahedra, that is, triangle antiprisms 
(Fig. 3a-b). If this empty space is surrounded 
by corpuscles, an icosahedron corpuscle ball 
emerges. Again, the edges towards the outside 
have to be slightly stretched.  In (Fig. 3d), the 
twelve  corpuscles  of  the  first  shell  are 
completed. They consist of 5 segments and 5 
mouths each. After adding a second shell of 
corpuscle elements - 4 segments and 2 mouths 
each - the icosahedral corpuscle ball appears 
(Fig. 3e). It contains thirty 3-segment bridges, 
which point outwards and are almost flat. To 
further expand this network, we think of the 
negative  space  again,  add  tetrahedra  to  the 
outer  faces  of  the  antiprisms,  and  surround 
these tetrahedra again by antiprisms; all these 
antiprisms happen to be octahedra. The emer-
ging,  more  complex  icosahedric  corpuscle 
ball  contains  four  shells  of  corpusles  and 
consists of alternating network corpuscle ele-
ments with 3 or 5 mouths (Fig. 3g). Since the 
emerging tunnels are strongly curved, the cen-
tral empty icosahedron is not visible anymore 
from the outside. 

As we expand the paper models shell by shell, 
tension  builds  up and any further  expansion 
becomes tough. We can reduce the tension in 
the  third  and  fourth  shell  by  removing  the 
elements at the core, i.e. its first and second 
corpuscle  shells.  Similar  to  the  structure 
shown in Fig. 1k, remaining mouths pointing 
towards  the  inside  can  be  closed  directly 
without  adding  new triangles.  The  resulting 
structure shows relatively little deformation: it 
comprises 20 elements with 3 segments and 3 
mouths  each,  almost  flat,  and  thirty  rather 
bold  elements,  each  with  5  segments  and 2 
mouths.  
Like in the case of the cube-centric grid mo-
dule,  this  module could be repeated periodi-
cally  within  a  higher-level  structure.  Again, 
this higher-level structure can consist of a Pla-
tonic solid and an antiprism – in this case, the 
dodecahedron and the pentagonal antiprism – 
stacked in alternation. Among the twelve pen-
tagon faces  of a dodecahedron,  only six  are 
covered  by  antiprisms,  while  the  other  six 
remain uncovered (Fig. 3j).  For the icosahe-
dron-centric  ball,  periodic  and quasiperiodic 
extensions to infinity could be imagined, but 
have not yet been shown to exist.

Figure 3: Icosahedron-centric corpuscle ball.   (a-c) A Platonic  icosahedron is  surrounded by 
octahedra (the antiprisms corresponding to its triangle faces). The construction resembles the one 
shown in Figures 1 and 2. (d) The first shell of corpuscles is completed. (e) By completing and 
closing the second shell of corpuscles, we obtain the icosahedron-centric corpuscle ball. (f) A layer 
of tetrahedra, surrounded by antiprisms (g) is attached to the central icosahedron. Together, these 
polyhedra build  the negative space of complex  icosahedron balls,  here containing the first  four 
shells.  In (h), the first and second shells  have been removed. (j) The Platonic dodecahedron, in 
alternation with pentagonal antiprisms, can serve as a higher-level structure in which the coreless 
ball shown in (h) as combined with (i) a corpuscle structure surrounding a pentagonal antiprism (10 
network corpuscles with 4 mouths and 5 segments, and 20 chain corpuscles with 2 mouths and 4 
segments each).
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