Integration of enzyme kinetic data from various sources

Storage and Annotation of Reaction Kinetics Data EML, May 21-23, 2007

> Wolfram Liebermeister, MPI-MG Berlin Computational systems biology

Scheme for a modelling workflow

	-	Eilo	Edit View	Incort	Format D	ata Tools Settings	Help			ceatoxt [=
f	(x) s	Tue		Insert						
ts	trean		🖹 🗎 🌧 (🎒 🔪	→	D 75% 📮 🛛	₩ ⊒, Ш	= 2+	AT 💽 🖸 🕈	1
-		7	f(m) SUM =							
		2								
		Bits	stream Vera	Sans	= 12	2 J A - B <i>i</i> U				*,00 *,0 🚴
	Param									± ± 🐲
+	G G	A1		X	Param	eterType				
	G		А	В	С	D	E	F	G	н
	G	1	ParameterType	Unit	ReactionID	MetabolitelD	Value	StdDev	Organism	
_	G	2	G	kJ/mol	nan	2-(alpha-Hydroxyethyl)thi	-122.21	435.68	nan	
-	G	3	G	kJ/mol	nan	CO2	-472.49	2.0819	nan	
-	G	4	G	kJ/mol	nan	Pyruvate	-200.50	435.84	nan	++
1	G	6	G	kl/mol	nan	ATP	-2236.1	65 149	nan	
	G	7	G	kJ/mol	nan	H2O	-212.47	35.217	nan	+
	G	8	G	kJ/mol	nan	AMP	-565.82	65.417	nan	
	G	9	G	kJ/mol	nan	Phosphoenolpyruvate	-1139	27.775	nan	
_	G	10	G	kJ/mol	nan	Orthophosphate	-1070.1	33.818	nan	
4	G	11	G	kJ/mol	nan	ADP	-1405.1	59.227	nan	
+	G	12	G	kJ/mol	nan	(S)-Malate	-712.34	27.956	nan	
+	G	13	G	kj/moi	nan	NAD+	11003.9	73.495	nan	
1	G	14	G	kJ/mol	nan	NADH NADP+	141.01	73 4495	nan	
1	G	16	G	kl/mol	nan	NADPH	245.81	73.442	nan	
	G	17	G	kl/mol	nan	Acetaldehyde	82.27	22.56	nan	
	G	18	G	kJ/mol	nan	CoA	-61.282	64.939	nan	
	G	19	G	kJ/mol	nan	Acetyl-CoA	-65.151	59.501	nan	
	G	20	G	kJ/mol	nan	H+	-37.07	15.263	nan	
4	G	21	G	kJ/mol	nan	Acetyl phosphate	-1060.7	29.604	nan	
+	G	22	G	kJ/mol	nan	Acetate	-245.08	23.373	nan	
+	G	23	G	kJ/moi	nan	Pyrophosphate	-1915.3	50.826	nan	
+	G	24	G	kJ/mol	nan	2. Oxeglutarate	-549.09	40.889	nan	
1	G	25	G	kl/mol	nan	NH3	48 945	76.675	nan	
	G	27	G	kJ/mol	nan	Oxalosuccinate	-1054.5	33.76	nan	
	G	28	G	kJ/mol	nan	UTP	-764.52	441.47	nan	
	G	29	G	kJ/mol	nan	D-Glucose_1-phosphate	-1290.9	41.99	nan	
	G	30	G	kJ/mol	nan	UDP-glucose	-134.41	437.32	nan	
-	G	31	G	kj/mol	nan	Oxaloacetate	-755.35	22.001	nan	_
	G	32	G	kj/mol	nan	Litraté	183.00	31.510	nan	
1	G	33	G	kl/mol	nan	Succinvl-CoA	-405.99	64 248	nan	
1	G	35	G	kl/mol	nan	Acceptor	-287.58	542.35	nan	
	G	36	G	kJ/mol	nan	Fumarate	-494.6	34.448	nan	
	G	37	G	kJ/mol	nan	Reduced acceptor	-282.35	542.35	nan	
4	G	38	G	kJ/mol	nan	Glyoxylate	-501.9	33.521	nan	
-	G	39	G	kJ/mol	nan	Isocitrate	-999.09	31.516	nan	
-	9	40	G	kj/mol	nan	3-Carboxy-1-hydroxyprop	-413.7	436.27	nan	
7	U\S	41	G	kj/mol	nan	2-Phospho-D-glycerate	-1350.2	27.969	nañ	
n.	0	42	G	kJ/mol	nan	[5]-Laciale	-202.54	24.720	nan	
	5	43	G	kl/mol	nan	alpha-D-Glucose	433.04	50.639	nan	
			-					20.022		

How to combine enzyme kinetic data?

Kinetic parameters are dependent!

What is determined by the available data?

How can we account for the error widths?

Can we use prior knowledge to compensate for missing values?

Kinetic parameters are dependent

A **→** B

Reversible Michaelis-Menten kinetics:

$$v = E \frac{k_+^{\text{cat}} a / K_a - k_-^{\text{cat}} b / K_b}{1 + a / K_a + b / K_b}$$

Equilibrium constant K^{eq}

$$k^{\rm eq} = \left(\frac{b}{a}\right)_{\rm eq} = \frac{k_+^{\rm cat}}{k_-^{\rm cat}} \frac{K_b}{K_a}$$

(1)
$$\ln k^{\text{eq}} = \ln k_{+}^{\text{cat}} - \ln k_{-}^{\text{cat}} + \ln K_{b} - \ln K_{a}$$

that means:

the parameters are dependent given the equilibrium constant

Gibbs free energy of formation G⁽⁰⁾

$$k^{\rm eq} = {\rm e}^{-\Delta G^{(0)}/RT}$$

(2)
$$\ln \mathbf{k}^{\text{eq}} = -\frac{1}{RT} N^{\text{T}} \mathbf{G}^{(\mathbf{0})}$$

that means:

- the G⁽⁰⁾ determine the K^{eq}
- the K^{eq} are dependent

Kinetic parameters are dependent

(1)
$$\ln k_l^{\text{eq}} = \ln k_{+l}^{\text{cat}} - \ln k_{-l}^{\text{cat}} + \sum_{\text{reactants } i} N_{il} \ln K_{il}^{\text{M}}$$

(2) $\ln k_l^{\text{eq}} = -\frac{1}{RT} \sum_i N_{il}^{\text{T}} G_i^{(0)}$

$$(2) \text{ between reactions} \quad (1) \text{ within reactions}$$

Problem: complicated relationships between all parameters

Solution: define a set of INDEPENDENT parameters

Independent system parameters

Velocity constant
$$k^{\rm V} = \sqrt{k_{+}^{\rm cat} k_{-}^{\rm cat}}$$

$$\ln k_l^{\rm eq} = -\frac{1}{RT} \sum_i N_{il}^{\rm T} G_i^{(0)}$$

$$\ln k_{\pm}^{\rm cat} = \ln k^{\rm V} \pm \frac{1}{2} \ln k^{\rm eq}$$

Independent system parameters

Velocity constant
$$k^{\rm V} = \sqrt{k_{\pm}^{\rm cat} k_{\pm}^{\rm cat}}$$

$$\ln k_l^{\rm eq} = -\frac{1}{RT} \sum_i N_{il}^{\rm T} G_i^{(0)}$$

$$\ln k_{\pm}^{\rm cat} = \ln k^{\rm V} \pm \frac{1}{2} \ln k^{\rm eq}$$

for kinetic law

Independent system parameters

Velocity constant
$$k^{
m V}=\sqrt{k_+^{
m cat}k_-^{
m cat}}$$

$$\ln k_l^{\text{eq}} = -\frac{1}{RT} \sum_i N_{il}^{\text{T}} G_i^{(0)}$$
$$\ln k_{\pm}^{\text{cat}} = \ln k^{\text{V}} \pm \frac{1}{2} \ln k^{\text{eq}}$$

Linear dependencies for logarithms:

for kinetic law

$$\begin{array}{c} \boldsymbol{X} = \boldsymbol{R} \ \boldsymbol{p} \\ \\ \text{log. observable} \\ \text{parameters} \end{array} \begin{array}{c} \text{log independent} \\ \text{parameters} \end{array} x = \begin{pmatrix} G^{(0)} \\ \ln k^{\mathrm{V}} \\ \ln K^{\mathrm{M}} \\ \ln k^{\mathrm{eq}} \\ \ln k^{\mathrm{M}} \end{pmatrix} \qquad \boldsymbol{R} = \begin{pmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \\ -\frac{1}{2} \frac{1}{RT} N^{\mathrm{T}} & 0 & 0 \\ -\frac{1}{2} \frac{1}{RT} N^{\mathrm{T}} & I & 0 \\ +\frac{1}{2} \frac{1}{RT} N^{\mathrm{T}} & I & 0 \end{pmatrix}$$

An alternative: independent equilibrium constants

Define independent equilibrium constants:

Set $N = N_0 L$ (N_0 has independent columns)

$$\ln k^{\text{eq}} = -\frac{1}{RT} N^{\text{T}} G^{(0)}$$
$$= -\frac{1}{RT} L^{\text{T}} N_0^{\text{T}} G^{(0)} = L^{\text{T}} (-\frac{1}{RT} N_0^{\text{T}} G^{(0)}) = L^{\text{T}} k^{\text{eq,indep}}$$

Exploiting the independent parameters

Are the parameter data feasible?

given data x^* , check whether

 $\exists p: x^* = R p$

Balance contradicting data

from redundant, contradictory x^{*} , obtain complete feasible *x*:

- solve $x^* = R^* p$ by least squares,
- set x = R p

But if there are too few data?

-> Values remain undetermined

Use plausible parameter ranges as priors in Bayesian estimation

log. independent parameters p

Uncertain parameters: distributions

Linear relationships between **log** parameters -> **Gaussian** distributions of **log** parameters

Linear functions a = R b

a multivariate Gaussian -> b multivariate Gaussian

$$\bar{a} = R\bar{b}$$

 $\operatorname{cov}(a) = R \operatorname{cov}(b) R^{\mathrm{T}}$

What was maximum likelihood again?

Bayesian parameter estimation

Additional prior knowledge in form of a distribution *Prob(p)*:

 $Prob(p | x^*) \sim Prob(x^* | p) Prob(p)$

Improving the parameter estimates: integration of metabolic data

The workflow

- 1. Define model structure
- 2. Use generalised Michaelis-Menten kinetics ("convenience kinetics")
- 3. Retrieve and map kinetic data relevant for the model
- 4. Determine priors
- 5. Balance parameters by Bayes estimation
- 6. Insert kinetics into SBML
- 7. Predict probabilistic model behaviour

Important points in data collection

Each data point needs an error range

- Must be realistic
- How to compare error ranges for different kinds of data?
- Different error sources

Data must stem from independent sources

- never use the same database entry twice
- never reuse data that were already used in the computations

It is important to keep track of correlations

- "posterior is the new prior"
- some knowledge about equilibrium constants is stored in G⁽⁰⁾ correlations

Aims and weaknesses of the workflow:

How can I use it?

- model-driven data collection and mapping of relevant data
- assess the possible ranges and correlations of parameters;
- provide parameter priors for model fitting

What's the use of low-fi models??

- initial model as starting point for detailed models
- complete high quality models, fill gaps (better than nothing)
- determine which additional data are most needed

What are their weaknesses?

- convenience kinetics differs from true laws
- definition of parameters may differ
- computed, in-vitro, or inferred values differ from the ones needed in the model
- automatic data mapping requires detailed and reliable annotations
- general weaknesses of bottom-up-approaches

What do we need to make the workflow useful?

Data collection and mapping

- easy access to databases
- precise annotations in models and kinetic data
- standard exchange formats for enzymatic data

Additional data sources

- databases
- statistical learning methods
- ab-initio calculations

Treatment of uncertainties & error propagation

- all data should come with error bars
- standards to describe uncertainties in SBML and enzyme data
- standards to describe relationships between parameters
- standards to quantify parameter correlations
- users: model fitting tools that use parameter priors

Thanks to ...

MPI for Molecular Genetics

Simon Borger Jannis Uhlendorf Anselm Helbig Edda Klipp

Dietmar Schomburg lab

Sebastian Buchinger Eva Vaylann

Genoscope, Evry

Vincent Schachter Maxime Durot

... and to you !!!

Bottom-up and top-down model building

Scylla ("bottom-up") in-vitro data may be wrong ... data may not be transferable ... models SHOULD not fit all data ...

Charybdis ("top-down") the fitted model may work, but the parameters have an unclear interpretation ...