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Abstract

Expression of metabolic enzymes increases the metabolic capabilities of the cell, but it also
consumes resources, and the gene regulatory systems of cells have to handle this tradeoff. To study
whether gene expression patterns reflect the varying metabolic needs of the cell, we translated
gene expression profiles into sets of active biochemical reactions, which constitute the expressed
metabolic subnetworks. The metabolic capacity of a carbon source denotes the number of metabo-
lites that can be produced from this carbon source and some inorganic nutrients. We studied the
metabolic subnetworks that are expressed during diauxic shift in yeast and found that the capaci-
ties of different carbon sources tend to decrease during the diauxic shift. The subnetwork expressed
in the initial glucose environment shows a high capacity of glucose, much higher than networks of
the same size arising in later stages of the diauxic shift or from a random selection of reactions.
The same holds for the essential capacity, the number of important, constitutive compounds that
can be produced from glucose. These findings indicate that gene regulation increases the range
of essential compounds that can be obtained from the available nutrients, while minimising the
number of expressed enzymes and therefore the burden of protein synthesis.
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1 Introduction

Cells use enzymes to catalyse and to control a huge number of biochemical reactions, which together
form a complex and highly connected cellular reaction network. In the last decades, many enzymes
from a wide spectrum of organisms have been classified and attributed to biochemical reactions. While
most specific enzyme kinetics are still unknown, exhaustive structural information about metabolic
networks has become accessible with the emergence of biochemical databases such as KEGG [1, 2] or
Reactome [3].

With the topological information of large-scale networks available, several approaches for the struc-
tural analysis of metabolism have been developed, such as flux balance analysis [4], elementary flux
modes [5], extreme pathways [6], and graph theoretical analyses [7, 8]. Recently, we have proposed
the method of network expansion [9, 10], which is particularly useful to assess biosynthetic capacities
of metabolic networks when they are provided with a choice of external nutrients. Like the other
structural methods, network expansion does not rely on the kinetic properties of enzymes.

During its lifetime, a cell experiences a wide range of environmental conditions, each of which
requires specific responses. Regulatory mechanisms such as transcriptional control respond to changes
in the environment and activate specific parts of cellular metabolism, while other parts are deacti-
vated. In this work, we provide a conceptional framework to translate gene expression data retrieved
from microarray experiments into networks of active enzymatic reactions. Expressed enzymes, and
accordingly active reactions, are identified by thresholding the expression data with a tunable thresh-
old parameter. In this paper, we focus on an experiment which measured the mRNA levels during
diauxic shift in the yeast Saccharomyces cerevisiae [11]. In this well studied example, yeast obtains its
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energy from anaerobic fermentation as long as glucose is available and switches to aerobic oxidation
after glucose has been depleted.

We analyse the resulting expressed subnetworks by network expansion to study which metabo-
lites can be produced from single specific carbon sources. The resulting synthesis capacities provide
functional characteristics of the expressed subnetworks. By tuning the threshold parameter, we can
change the size and the functional characteristics of the resulting networks.

Since the production and degradation of enzymes requires energy and material, it seems plausible
that the regulatory mechanisms shut down enzymes that do not contribute to the maintainance of
cellular functions. This economy of protein production should result in specific expressed subnetworks
for different environmental conditions. To test this hypothesis, we compare the essential capacity of
the network – the capacity to produce constitutive compounds – to essential capacities of random
networks of comparable size. In line with our hypothesis, we find that the expressed subnetworks
show a significantly better performance.

2 Translating expression profiles into expressed metabolic subnet-

works

The cellular metabolic network comprises all biochemical reactions that are catalysed by enzymes
coded in the genome. The specific amount of enzyme molecules is actively controlled by the cell:
enzymes that are not needed can be switched down, e. g. by downregulation of the corresponding
genes and initiation of their degradation. If some of the enzymes are completely absent, then the
remaining active reactions form a subnetwork of the entire metabolic network. In this section we
present a method to construct such subnetworks from expression data measured with microarrays.

In our analysis, the logarithmic expression of a gene (relative to a certain reference value) is
accepted as a measure for the catalytic acitivity of the corresponding enzyme. We assume that a
chemical reaction is only active if the corresponding expression value exceeds a certain threshold. The
method to translate the measured expression values into binary activity profiles is explained in the
methods section and schematically depicted in Figure 1.
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Figure 1: Translating microarray data into binary activity profiles. Top left: Differential expression
data for three hypothetical genes A, B, and C. The curves start with a logarithmic value of zero
because the sample at the first point in time is used as the reference sample. Top right: Subtracting
the gene means shifts the individual curves. Data points above a certain threshold – defined by a
(1 − q)-quantile of the distribution of all data – are considered expressed (grey), leading to binary
activity profiles shown below.

The decision whether a reaction is regarded as active or inactive depends partly on the data
preprocessing. The absolute measured values in a microarray experiment (usually channel intensities
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for red and green light fluorescence markers) can strongly depend on the individual properties of the
microarray chip. Therefore, we shift the mean logarithmic value for each microarray to zero. In
addition, the mean logarithmic expression is subtracted for each gene as shown in Figure 1. The
resulting value compares the expression of a gene at a certain point to the expression in the other
points rather than to a specific (somewhat arbitrarily chosen) reference sample.

We then choose a threshold parameter 0 ≤ q ≤ 1 that determines the fraction of genes to be
considered expressed. For example, a threshold value of q = 0.8 means that the top 80% of all gene
expression values will represent expressed genes, while the remaining lowest 20% represent inactive
genes. In this way, microarray data are translated into binary expression profiles. We subsequently
identify those expressed genes which code for metabolic enzymes and, for reasons of simplicity, we con-
sider all enzymes to be expressed for which at least one expressed gene has been identified. These sets
of enzymes define the active reactions which compose the expressed subnetwork for each microarray
experiment considered.

Figure 2: Discrete activity profiles during the diauxic shift in yeast. The panels show the three central
metabolic pathways glycolysis, citric acid cycle, and the pentose phosphate pathway. Each reaction is
represented by a box showing whether it is active in different phases of the experiment [11] (from left,
9 hours, to right, 21 hours) and for different threshold values (top to bottom: q = 0.85, 0.825, 0.8).

Figure 2 shows the results for gene expression in yeast, measured during diauxic shift [11]. In the
experiments, yeast cells in batch culture run out of the nutrient glucose and switch their metabolism
from fermentation of sugar to respiration based on ethanol. Samples have been taken at seven time
points between 9 and 21 hours after application of glucose. In the figure, little boxes at the reactions
indicate the binary expression profile during time (from left to right).

While most reactions remain active during the whole experiment, the fructose bisphosphatase reac-
tion (converting fructose 6-phosphate into fructose 1,6-bisphosphate), an important step in glycolysis,
is shut down in the last two points in time. Increasing the threshold value q (rows within the little
boxes) also increases the size of the expressed subnetwork, that is, the number of active reactions.
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3 Structural analysis of the expressed metabolic networks

In the previous section, we have shown how gene expression profiles can be translated into expressed
metabolic subnetworks. For the diauxic shift data from [11], we have calculated the expressed sub-
networks for each time point and for several threshold values. Now we shall investigate structural
and functional properties of these subnetworks using the method of network expansion [9, 10]. This
method allows a characterisation of metabolic networks in terms of their synthesising capacities. In
particular, we determine which biochemical compounds can be produced when inorganic material is
abundant while exclusively one carbon containing compound is available. The number of the com-
pounds that can be produced from a particular carbon source will be termed the synthesising capacity,
or simply the capacity, of the expressed subnetwork for this particular carbon source. The capacities
are calculated using network expansion as described in the methods section.
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Figure 3: Expressed subnetworks during diauxic shift in yeast. The two left panels show the network
size (number of metabolites, top, and number of reactions, bottom) for several threshold values (differ-
ent lines, the values decrease from top to bottom). The remaining panels show synthesising capacities
for selected carbon sources.

As shown in Figure 3, the synthesising capacities for selected carbon sources change during the
diauxic shift. The panels in the figure, representing the results for chemically related saubstances, have
been arranged in pairs: The panels in the second column show the result for two hexoses, α-D-Glucose
and D-Mannose, those in the third column for two pentoses, D-Ribose and D-Xylulose, and the right
two panels for the two-carbon metabolites ethanol and acetate. Different lines correspond to different
values of the threshold parameter.

For most threshold values and for most carbon sources, the synthesising capacity tends to decrease
as glucose becomes limited. At the first two time points (9 and 11 hours), all expressed subnetworks
computed with high threshold values (q ≥ 0.8) display a large synthesising capacity for all examined
carbon sources. In fact, the expressed subnetworks can synthesise over 200 metabolites provided that
exclusively one of the selected carbon sources and inorganic material is available. Apparently, the
metabolic network of yeast expressed under glucose-rich conditions ensures a high capacity for a large
number of carbon sources.

For α-D-Glucose, we observe a dramatic drop in synthesising capacity between 17 and 19 hours
after glucose application for all reasonably high threshold values (q ≥ 0.6). Interestingly, this is
the point in time when cells run out of glucose [11]. If glucose is no longer available, the ability to
synthesise many molecules from glucose is apparently no longer an important cellular function. As
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a consequence of glucose deprivation, cells react by shutting off some parts of their metabolism and
switching on others. This change in metabolic activity is reflected in the change of the synthesising
capacities.

The synthesising capacities for chemically related substances display a similar behaviour during
diauxic shift. For example, the capacity for D-Mannose exhibits a similar behaviour as for α-D-Glucose.
However, the determined expressed subnetworks for threshold values q ≥ 0.825 at the late times (19
and 21 hours) still display a rather large glucose capacity (over 100 compounds), while a high mannose
capacity requires an extremely high threshold value of q = 0.95. This suggests that for the critical
threshold values of q = 0.9 and q = 0.825, the expressed subnetworks still allow for a flexible chemical
conversion of glucose but miss exactly those reactions which connect mannose to the remaining glucose
metabolism. A closer inspection revealed that this is indeed the case and that the critical reaction
is mediated by the enzyme mannose-6-phosphate ketol-isomerase, converting mannose-6-phosphate
into fructose-6-phosphate. In fact, if the network determined with threshold q = 0.825, containing 511
reactions, is structurally modified by adding this single reaction, the synthesising capacity for mannose
increases from 22 to over 100. It is biologically reasonable for yeast to maintain certain conversion
capabilities for glucose even if external glucose is no longer available, since glucose can internally be
produced and act as an intermediate metabolite. However, it is not economic for the cell to invest
energy in the production of enzymes that convert mannose into glucose if no mannose is externally
available.

The two pentoses show almost identical synthesising capacities. Interestingly, for intermediate
threshold values (0.1 ≤ q ≤ 0.9), the capacity drops significantly between 13 and 15 hours (a good
time before complete glucose exhaustion) and partly recovers between 19 and 21 hours (after complete
exhaustion). This indicates that there exists some connection between the regulation of pentose
metabolism and the external availability of hexoses. Obviously, investigation of the three central
metabolic pathways glycolysis, citric acid cycle and pentose phosphate pathway (Figure 2) is not
sufficient to explain this behaviour in detail. However, their examination hints at an important role
of ribose-5-phosphate isomerase, transforming D-ribose-5-phosphate into D-ribulose-5-phosphate: the
presence / absence of this reaction strongly correlates with high / low synthesising capacity for pentoses
– this reaction is inactive for the three points 15, 17, and 19 hours for a wide range of threshold values.

Surprising, and far more difficult to explain, is the result for ethanol (and acetate, displaying almost
exactly the same behaviour). It is known that during diauxic shift, yeast changes from anaerobic to
aerobic metabolism. After glucose deprivation, ethanol is used as both energy and carbon source.
Therefore, one would intuitively expect that the synthesising capacity for ethanol increases during
diauxic shift. However, this is apparently not the case. To find explanations for this behaviour on
the network level, we have tried to identify critical reactions that are responsible for the decreased
synthesising capacity (see Methods). When comparing the expressed subnetworks at 17 hours for
the threshold values q = 0.9 (network size of 677 reactions, capacity for ethanol of 178 compounds)
and q = 0.825 (641 reactions, 29 compounds), we could identify a reaction that is lost in the smaller
network, which seems to inflict a dramatically reduced synthesising capacity. However, this reaction,
catalysed by the enzyme aminoadipate semialdehyde oxidoreductase, is involved in lysine degradation
and no direct connection to the metabolism of ethanol is apparent.

While the capacity found for glucose seems to reflect the external availability of glucose, the ca-
pacity for ethanol is apparently not a good indicator for the absence of glucose. Further investigations
will be necessary to understand the relation between the synthesising capacity of ethanol and the shift
to aerobic oxidation during glucose depletion [11].

4 Performance of the expressed subnetworks

Enzymes are necessary to catalyse the chemical reactions that transform external nutrients into
biomass. However, the production, maintainance, and degradation of enzymes requires energy and



6 Ebenhöh and Liebermeister

material, and the presence of enzymes increases the osmotic pressure. All this puts a burden on the
cell, so the amount of enzyme molecules should be kept small.

Different optimality-based approaches [12, 13, 14, 15, 16] have been suggested to model the compro-
mise between metabolic performance and the cost of enzyme production. Under certain circumstances,
it seems to be optimal for the cell to switch off parts of the metabolic network. An analysis of the
Lac operon [16] has shown that the operon should be shut off completely if lactose is only available in
small amounts.

Here we characterise networks by their capability to produce metabolites from a selected carbon
source. In this framework, enzyme expression enables the cell to produce biomass precursors and other
essential metabolites (which we together term constitutive metabolites) from the external resources.
This benefit is counteracted by the cost of enzyme production, quantified by the number of active
reactions. Thus ideally, gene expression should lead to expressed subnetworks that maximise the
synthesising capacity for the available carbon sources, while minimising the network size.

Our distinction between active and inactive reactions depends on an arbitrary threshold q, and
it may be that the computed capacities just reflect our specific way of data preprocessing, a specific
choice of the threshold value q, or simply the network size. To rule out these possibilities, we show
that for a range of threshold values the expressed networks found in reality yield higher benefits
than reference networks of the same size and thus the same cost of enzyme production. As reference
networks, we consider random subnetworks constructed from the complete yeast network by randomly
chosing a given number of reactions. The underlying null hypothesis is that the gene expression values
do not at all reflect the metabolic function of the genes.
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Figure 4: Performance of the expressed subnetworks during diauxic shift. Left: Synthesising capacity
for α-D-Glucose is plotted versus subnetwork size. Each light grey point refers to a random subnet-
work. The lines correspond to subnetworks expressed during diauxic shift [11], each line represents an
experimental point (evaluated with different threshold values q). Right: Essential capacities for α-D-
Glucose denoting the number of constitutive compounds obtainable from glucose. In both cases, the
expressed network under glucose conditions performs better than expressed networks at later points
and random networks of the same size.

To test our hypothesis of increased capacity for the nutrient α-D-Glucose, we plotted in Figure 4a
the synthesising capacity against the network size for different choices of the threshold parameter q.
Grey points correspond to random networks, while each line depicts an expressed subnetwork for
different choices of the threshold q. As expected, larger random networks (x-axis) tend to yield larger
capacities for glucose (y-axis). The same holds for the subnetworks expressed during the diauxic shift:
at a low threshold, both the network size and the capacity for glucose are small. When the network
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becomes larger, also the capacity for glucose increases; however, when compared to random networks,
high capacities are already reached for networks of moderate size. We found that the network expressed
under glucose conditions, thresholded to a size of 600 reactions, has a higher capacity than any of
10000 random networks of the same size. At a size of 650 reactions, two of the random networks have
higher capacity (p-value ≈ 2 · 10−4), while at 700 reactions, the p-value raises to 0.084.

Altogether, the subnetwork expressed at the beginning of the experiment performs better on glucose
than the subnetworks at intermediate or late times where no glucose is available, and significantly
better than the randomly chosen subnetworks.

Since not all metabolites play an important role in metabolism, we have defined an ad-hoc list
of 76 constitutive metabolites which are essential for growth (see Table 1). We repeated the above
analysis determining the essential capacity, under which we understand the number of constitutive
metabolites that can be produced from glucose as the sole carbon source. The results are plotted in
Fig. 4b. As for Fig. 4a, it can be observed that expressed subnetworks perform significantly better
than random subnetworks. Interestingly, even for later times and low threshold values, the essential
capacity remains very high as compared to randomly selected subnetworks.

Table 1: Constitutive metabolites. This ad-hoc list contains metabolites which are considered to be
essential for cell growth. It comprises most amino acids and important cofactors. The list has been
compiled by determining those metabolites which appear in at least 90% of the metabolic networks
of all organisms contained in the KEGG database.

H2O ATP NAD+ NADH

NADPH NADP+ ADP Orthophosphate

CoA CO2 Pyrophosphate NH3

UDP S-Adenosyl-L-methionine AMP S-Adenosyl-L-homocysteine

Pyruvate Acetyl-CoA L-Glutamate GDP

Glycine L-Alanine GTP L-Lysine

L-Aspartate CMP L-Arginine CTP

L-Glutamine L-Serine L-Methionine Phosphoenolpyruvate

UTP L-Tryptophan L-Phenylalanine H+

ITP L-Tyrosine L-Cysteine Tetrahydrofolate

IDP UMP Glyceronephosphate CDP

D-Ribose5-phosphate L-Leucine dATP L-Histidine

5,10-Methylenetetrahydrofolate GMP L-Proline L-Valine

L-Threonine dADP dGTP dAMP

dGDP dTDP dTMP dUMP

L-Isoleucine dCTP dTTP dUTP

dCDP dUDP Thiamintriphosphate Zymosterol

Heme dGMP L-1-Pyrroline-3-hydroxy-5-carboxylate FAD

3’,5’-CyclicAMP L-Asparagine dCMP Glutathione

5 Discussion

Differential expression leads to a temporal up- and downregulation of enzymes. Complete downregula-
tion of enzymes switches off the corresponding biochemical reactions, reducing the metabolic network
to a current expressed subnetwork. We presented a heuristic method to construct expressed metabolic
subnetworks from expression data.

Our method of thresholding the expression data is based on the following argument: we assume
that a low expression value of an enzyme leads to a small activity. For saturable kinetics, this implies
a small maximal velocity and hence a small reaction rate. Even if no reaction is completely switched
off, we assume that the downregulated reactions are so slow that their contribution to metabolism can
be neglected, and we compute the synthesising capacities arising from the remaining, sufficiently fast
reactions. We expect that using enzyme concentration instead of mRNA concentrations will lead to
more reliable results.

The size of the determined subnetworks depends critically on an arbitrary selected threshold param-
eter q. However, Figure 2 shows that the results for the three central metabolic pathways (glycolysis,
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the citric acid cycle and the pentose phosphate pathway) are stable within a certain parameter range
(0.8 ≤ q ≤ 0.85), and also the binary activity profiles for most important enzymes remain unchanged.

We characterised the calculated subnetworks at each point in time and for different threshold
parameters by the synthesising capacities for various carbon sources. By comparing the composition
of the calculated subnetworks with their capacities, we could identify reactions whose absence or
presence critically influences the capacities for several carbon sources. For some cases, such as the
mannose capacity, a critical reaction within the metabolic subnetwork could be identified. However,
for other examples, like the ethanol capacity, it is not obvious why the presence or absence of the
critical reactions leads to such extreme changes in capacity. Considering the high connectedness and
complicated wiring of a metabolic network, it should not be surprising that many phenomena cannot
be related to single reactions.

While the synthesising capacities for hexoses show plausible time courses – the capacity for glucose
should decrease once glucose is no longer available – the time course for ethanol is not directly and
intuitively related to the textbook picture of the diauxic shift. Intuituvely, we would expect the
ethanol capacity to increase during diauxic shift but we find that this is not the case. A possible
explanation for this discrepancy is as follows: It is conceivable that production of new compounds
from ethanol requires additional cofactors which we have not considered in the calculations based on
network expansion. In such a case the determined capacity of ethanol will be low even if there is no
net consumption of the cofactor in reality.

One important function of metabolism is to provide precursors for biomass production and other
metabolites which are indispensable for a wide class of reactions. Continuously growing cells need to
produce them: thus we scored metabolic networks by the number of (1) all compounds and (2) all
constitutive compounds they can produce from glucose. We compared the performance of expressed
subnetworks to a large number of random networks and observed that for a range of network sizes,
the expressed networks lead to a significantly high yield even for small subnetwork size. This result
supports the hypothesis that the expression of enzymes follows an optimality principle: the cell seems
to ensure that a maximal number of essential metabolites can be produced by a minimal set of active
reactions. Studies to corroborate and extend this finding may comprise a more detailed modelling
that accounts for the exact composition of the growth medium and compares the results for different
experimental conditions.

6 Methods

6.1 Construction of expressed subnetworks from gene expression data

Expression data were downloaded from [11]. The expressed subnetworks for the different time points
were constructed as follows: (1) Microarray data were transformed to log10 ratios (intensity in sample
divided by intensity in the reference sample). (2) Multiple values for the same open reading frame
(ORF) were averaged (arithmetic mean of log values). Missing values were replaced by values guessed
from a linear regression model that is also used in analysis of variance: column, row, and total
means were computed from the non-missing values. For each missing value, we imputed the sum of
the corresponding row and column means minus the total mean. (3) The data were normalised by
subtraction of array mean values and subsequent subtraction of the gene mean values. (4) Expressed
ORFs were determined by thresholding the expression values. We consider the distribution of all
expression values in a data set. Given the quantile threshold q, an ORF is considered expressed if the
corresponding expression value is above the (1−q)-quantile. (5) We downloaded the metabolic network
of yeast from the KEGG database [1, 2]. The data set contains a mapping between chemical reactions
and open reading frames. An enzyme is considered expressed if at least one of the corresponding
ORFs (as indicated by KEGG) is expressed. We also tested other variants of data preprocessing: in
step (3), we considered (i) unnormalised data and (ii) data that were only normalised for the array
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mean. In step (4), we also tried thresholding per array. These different preprocessed data lead to
similar general conclusions (not shown).

6.2 Structural analysis using network expansion

In the method of network expansion (described in detail in [10]), a series of metabolic networks is
constructed from a given number of initial substrates (the seed). In each step, the network is expanded
by those reactions which utilise only the seed and those metabolites which are products of reactions
incorporated in previous steps. By construction, the metabolites within the final network characterise
the synthesising capacity of a metabolic network when only the seed substrates are available. For our
calculations, we assume that important cofactors, namely ATP/ADP/AMP, NAD(P)H/NAD(P)+ and
Coenzyme-A, whose presence is required for many reactions, do not have to be synthesised during the
expansion process. We rather assume that they act only in their function as cofactors, i. e. transferring
phosphate groups, accepting electrons or transferring acyl groups. The reason for this approach is
that these cofactors exist in every functional cell and, when functioning as cofactors, they are neither
produced or consumed and consequently their total concentrations remain constant. The cofactor
functionality is therefore provided even if they cannot be produced from the seed compounds. The
role of cofactors has been extensively discussed in [10].

The synthesising capacities in this work have been calculated as follows: We first identified all non-
carbon containing compounds appearing in the yeast metabolism. Then, for each carbon-containing
metabolite in the yeast metabolism, we added this metabolite to the previously determined set of
non-carbon compounds and used this set as a seed for the network expansion. These calculations were
carried out for all carbon-containing compounds and for all determined expressed subnetworks.

We identified critical reactions by the following approach: We investigate the case for two expressed
subnetworks corresponding to different threshold values q, for which the larger displays a high and
the smaller a low synthesising capacity for some carbon source. We first identify those reactions
which appear only in the larger network. For each such reaction, we construct a new subnetwork by
removing it from the larger subnetwork and calculate its capacity. A reaction is considered critical if
its removal results in a considerably reduced synthesising capacity. Similarly, we construct for each
of these reactions a subnetwork by adding the reaction to the smaller of the two subnetworks and
again compute the capacity. In this case, a reaction is considered critical if its addition leads to a
considerably increased synthesising capacity. For the presented examples, both methods resulted in
the same critical reactions.
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