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1Complexity reduction is an important issue in the

mathematical modelling of cells. The use of small

effective models can speed up numerical simulations

considerably, and on top of this, focusing on the

most important modes of dynamics can help us to

understand the design of biological systems. In this

article, we concentrate on small biochemical systems

(e.g. a single metabolic pathway) that are embedded

in a complex environment. For the sake of model-

ling, reactions in the environment are often ignored,

while external metabolite concentrations are held at

fixed values. To justify this, it is typically assumed

that these metabolite concentrations are either very

high or efficiently buffered, which is not always the

case. If the buffering is incomplete, then the system

will influence its environment and create perturba-

tions that can act back on the system. If this feed-

back loop is neglected, then the model is possibly

not suited to describe the data, and fitted model

parameters may be wrong even if the fit looks satis-

factory. Hence, we are looking for a more faithful

representation of the environment that can provide

realistic boundary conditions.

For the modelling of steady states, this has been

accomplished by using phenomenological relations

between different external metabolite concentrations

[1]. For dynamic simulations, however, the problem

becomes harder: the environment has to be modelled

dynamically, which can increase the simulation time.

As a remedy, we propose to replace it by a small linear

model that is supposed to mimic the dynamic

responses of the original environment. Reduction of lin-

ear models has been studied for a long time, and various

methods have been proposed. We use balanced trunca-

tion [2], which is numerically demanding but yields a

stable reduced system with a bounded approximation

error (the Matlab code for balanced truncation can

be found at http://www.tu-chemnitz.de/mathematik/

industrie_technik/software/software.php). Moreover, by

tuning the dimensionality, one can choose a compromise

between approximation accuracy and numerical effi-

ciency. Balanced truncation has successfully been
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Modelling of biochemical systems usually focuses on certain pathways,

while the concentrations of so-called external metabolites are considered

fixed. This approximation ignores feedback loops mediated by the environ-

ment, that is, via external metabolites and reactions. To achieve a more

realistic, dynamic description that is still numerically efficient, we propose

a new methodology: the basic idea is to describe the environment by a lin-

ear effective model of adjustable dimensionality. In particular, we (a) split

the entire model into a subsystem and its environment, (b) linearize the

environment model around a steady state, and (c) reduce its dimensionality

by balanced truncation, an established method for large-scale model reduc-

tion. The reduced variables describe the dynamic modes in the environment

that dominate its interaction with the subsystem. We compute metabolic

response coefficients that account for complexity-reduced dynamics of the

environment. Our simulations show that a dynamic environment model

can improve the simulation results considerably, even if the environment

model has been drastically reduced and if its kinetic parameters are only

approximately known. The speed-up in computation gained by model

reduction may become vital for parameter estimation in large cell models.
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applied to linear control systems of high state–space

dimensions ([3] and examples therein).

This article provides the reader with practical

instructions for applying complexity reduction to bio-

chemical models, and illustrates it with simple example

models. An outline of balanced truncation is given in

the methods section at the end of the article. We shall

not touch upon the challenging question of how a

detailed cell model can be established in the first place.

Our goal is to make existing large models tractable

and to speed up simulations, which can be vital for

parameter estimation by maximum-likelihood or Baye-

sian methods (e.g. Monte Carlo Markov chain [4]).

Besides this, balanced truncation highlights the

dynamic modes of the environment that are most

important for its interactions with the system under

study—which may be interesting in itself.

Model separation and reduction

A common ‘divide-and-conquer’ approach to model

reduction is to split the entire complex system into

modules and to study them separately. It has been

argued that biological systems have evolved to consist

of weakly interacting modules (also termed ‘pathways’)

because this may increase their robustness ([5] and refer-

ences therein). There exist handy heuristics for defining

modules in mathematical cell models, for instance cut-

ting the network at ‘hub’ metabolites [6] and clustering

the time series obtained from model simulations [7].

Rohwer et al. [8] defined monofunctional units for meta-

bolism. Interactions among modules in steady state and

the relationship between the local and global behaviour

have been studied in modular response theory [9].

A second successful method of complexity reduction

is to exploit the time scale separation of fast and slow

processes [10,11]: by assuming quasi-steady states or

quasi-equilibria, the number of independent variables

can be reduced considerably, as exemplified by the

analysis of the Wnt signalling pathway in [12]. Alter-

natively, fast global modes, as detected by analysing

the Jacobian, can be eliminated ‘on the flight’ during

simulations [13].

Here we examine a particular combination of modu-

larization and complexity reduction: starting from a

biochemical model, which comprises a subsystem and

its environment, we aim to maintain the subsystem in

its original form while replacing the environment by a

linear model of lower dimensionality. We proceed as

follows. First, the subsystem is split into an internal

part and a boundary containing the communicating

metabolites. Likewise, the environment is split into an

exterior part and a boundary containing the communi-

cating reactions. Subsystem and environment are only

connected via the communicating metabolites and

reactions, and the essence of our method is to provide

the subsystem with approximate time courses of the

communicating reactions, which in turn respond to the

communicating metabolites. To simplify the relation-

ship between them, we linearize the environment model

around a stable steady state and replace it, using bal-

anced truncation, by a small effective model. In the

remainder of this section, we shall elucidate these

points step by step.

A metabolic system and its environment

The modelling of metabolic networks has been des-

cribed in detail by Heinrich and Schuster [10], and a

convenient introduction to metabolic control analysis

can be found in Hofmeyer [14]. Let us recall here just

some basic definitions: a biochemical reaction system

is described by the differential equation system

_sðtÞ ¼ NvðsðtÞ; pÞ ð1Þ

where s is the vector of metabolite concentrations and

v is the vector of reaction velocities. The vector p

contains the kinetic parameters, and N denotes the

stoichiometric matrix, which contains in its kth column

the stoichiometric coefficients for the kth reaction. An

example can be found below. The derivatives (es)ik ¼
¶vi/¶sk are called the reaction elasticities. The para-

meter elasticities (ep)im ¼ ¶vi/¶pm are the derivatives of

the reaction velocities with respect to the kinetic

parameters.

The subsystem is defined by its metabolites, termed

the subsystem metabolites. All other metabolites are

called environment metabolites. Our first aim is to split

a system into four regions, as shown in Fig. 1: the

interior, the subsystem boundary (containing the com-

municating metabolites), the environment boundary

(containing the communicating reactions), and the

exterior. The interior and the exterior are connected to

each other only via the boundaries. A metabolite and

a reaction are called ‘connected’ if the metabolite is

a substrate, product, or effector of the respective

enzyme. We assign each metabolite and reaction either

to the interior, to a boundary, or to the exterior by the

following definitions: a reaction is called internal if it

is only connected to subsystem metabolites, external if

it is only connected to environment metabolites, and

otherwise, it belongs to the environment boundary. A

metabolite is called internal if it belongs to the subsys-

tem and is only connected to internal reactions, exter-

nal if it belongs to the environment, and otherwise, it

belongs to the subsystem boundary.

W. Liebermeister et al. Complexity reduction of biochemical networks

FEBS Journal 272 (2005) 4034–4043 ª 2005 FEBS 4035



Similar definitions apply if the subsystem is initially

specified by its reactions. Internal, external and bound-

ary quantities will be denoted by the subscripts ‘int’,

‘ext’, and ‘bnd’, respectively. The subscript ‘tot’ refers

to the entire system.

After reordering the metabolites and reactions

according to:

stot ¼
sint
sbnd
sext

0
@

1
A; vtot ¼

vint
vbnd
vext

0
@

1
A; ð2Þ

the above definitions imply that the stoichiometric

matrix can be written as

Ntot ¼
N int

int 0 0
Nbnd

int Nbnd
bnd 0

0 Next
bnd Next

ext

0
@

1
A; ð3Þ

and the vectors of reaction velocities for interior,

boundary, and exterior read

vint ¼ vintðsint; sbnd; pÞ
vbnd ¼ vbndðsbnd; sext; pÞ
vext ¼ vextðsext; pÞ:

ð4Þ

The connections among metabolites and reactions in

the four regions of the model are illustrated in Fig. 1.

With Eqs (3) and (4), the system equations can be

rewritten as

_sint ¼ N int
intvintðsint; sbnd; pÞ

_sbnd ¼ Nbnd
int vintðsint; sbnd; pÞ þ Nbnd

bndvbndðsbnd; sext; pÞ
_sext ¼ Next

extvextðsext; pÞ þ Next
bndvbndðsbnd; sext; pÞ:

ð5Þ

Linearizing the environment model

The next step is to linearize the reactions kinetics vbnd
and vext in the environment. To do so, we have to

choose reference values �sbnd;�sext;�vbnd; and �vext, descri-

bing a steady state of the environment. The steady

state requires that

0 ¼ Next
ext�vext þNext

bnd�vbnd: ð6Þ

Valid reference values can be obtained as follows: we

first choose some typical values for �sbnd for the bound-

ary metabolites and some reference values p
0 for the

kinetic parameters. Keeping these values fixed, we com-

pute a steady state for the environment and accept the

resulting steady-state concentrations and fluxes as the

reference values �sext and �vbnd. If no stable steady state

exists, then our approach cannot be implemented.

The reaction velocities in the environment are now

linearized around the reference state, that is, replaced

by the linear expressions

vbndðsbnd; sext; pÞ ¼�vbnd þ ebndbndDsbnd þ ebndext Dsext þ ebndp Dp

vextðsext; pÞ ¼�vext þ eextextDsext þ eextp Dp

ð7Þ

where Dsbnd :¼ sbnd ��sbnd and Dsext :¼ sext ��sext. The

term Dp ¼ p ) p0 denotes a deviation from the refer-

ence parameter values. After setting Dvbnd :¼ vbnd�
�vbnd, the differential equations (Eqn 5) read

_sint ¼ N int
intvintðsint; sbnd; pÞ

_sbnd ¼ Nbnd
int vintðsint; sbnd; pÞ þNbnd

bnd ð�vbnd þ DvbndÞ
D_sext ¼ Next

ext ð�vext þ eextextDsext þ eextp DpÞ

þNext
bndð�vbnd þ ebndbndDsbnd þ ebndext Dsext þ ebndp DpÞ

ð8Þ

with

Dvbnd ¼ ebndext Dsext þ ebndbndDsbnd þ ebndp Dp: ð9Þ

With the stationarity condition (6), the third equation

of (8) becomes:

D_sext ¼ ðNext
exte

ext
ext þ Next

bnde
bnd
ext ÞDsext

þ Next
bnde

bnd
bndDsbnd þ ðNext

exte
ext
p þ Next

bnde
bnd
p ÞDp ð10Þ

For the sake of simplicity, let us assume that the

parameters remain fixed (Dp ¼ 0). By setting

x ¼ Dsext
u ¼ Dsbnd
y ¼ Dvbnd

ð11Þ

and

exteriorinterior system
boundary boundary

environment

S VS    , Vint int bnd extbnd S     ,V ext

environmentsystem

Fig. 1. Subdividing a biochemical network into subsystem and

environment. Metabolites and reactions are shown as circles and

boxes, respectively. The subsystem (left half) is defined by a set of

metabolites (shaded circles). The entire system is split into four

parts, the interior (left), the exterior (right), and the two boundaries

(centre). The subsystem boundary consists of metabolites (sbnd),

while the environment boundary consists of reactions (vbnd). The

boundary metabolites connect the interior to the environment, and

the boundary reactions connect the exterior to the subsystem.

Complexity reduction of biochemical networks W. Liebermeister et al.
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A ¼ Next
exte

ext
ext þ Next

bnde
bnd
ext

B ¼ Next
bnde

bnd
bnd

Bp ¼ Next
bnde

bnd
p þ Next

exte
ext
p

C ¼ ebndext

D ¼ ebndbnd

Dp ¼ ebndp ;

ð12Þ

our equation system (10) can be written in a standard

form for linear dynamical systems:

_xðtÞ ¼ A xðtÞ þ B uðtÞ; t > 0; xð0Þ ¼ x0

yðtÞ ¼ C xðtÞ þ D uðtÞ; t � 0:
ð13Þ

The first equation describes the dynamics of the exter-

nal concentrations (x), depending on the changes of

the boundary concentrations (u). The second equation

expresses the boundary reaction velocities by the exter-

nal and boundary concentrations. To account also for

parameter changes Dp, the above formulae need to be

modified only slightly: we use the augmented vector

u0 ¼
� u
Dp

�
and the joint matrices B¢ ¼ (B Bp) and

D¢ ¼ (D Dp).

For balanced truncation, the matrix A, that is, the

Jacobian of the environment model, must have full

rank, which is not the case if the exterior concentrations

sext obey conservation relations. In this case, we follow

[15] and restrict the environment model to a set of inde-

pendent environment metabolites with concentrations

sind. We define the reduced stoichiometric matrices N ind
ext

and N ind
bnd, and a link matrix L such that _sext ¼ L _sind. The

expressions for A, B, and C in (Eqn 12) are replaced by:

A ¼ N ind
ext e

ext
extLþ N ind

bnde
bnd
ext L

B ¼ N ind
bnde

bnd
bnd

Bp ¼ N ind
bnde

bnd
p þ N ind

ext e
ext
p

C ¼ ebndext L:

ð14Þ

This transformation to independent metabolites ren-

ders the matrix A nonsingular, except for pathologic

cases where the steady-state of the environment is not

stable. This happens if the elasticity matrix (eext|ebnd)
does not have full column rank.

Coupled system equations

Now we can rewrite the entire system in a compact

form: we drop the subscript for metabolites and reac-

tions in the subsystem setting

s:¼ sint
sbnd

� �
; v¼vint;N :¼ N int

int

Nbnd
int

� �
;Nbnd :¼

N int
bnd

Nbnd
bnd

� �
;e:¼eintint;

and introduce a projection matrix P such that sbnd ¼
PSS. Altogether, we obtain a coupled equation system

for internal concentrations s and external concentra-

tions x:

uðtÞ ¼ P sðtÞ ��sbnd ð15aÞ
_xðtÞ ¼ A xðtÞ þ B uðtÞ þ BpDpðtÞ ð15bÞ
yðtÞ ¼ C xðtÞ þ D uðtÞ þ DpDpðtÞ ð15cÞ

vbndðtÞ ¼�vbnd þ yðtÞ ð15dÞ
_sðtÞ ¼ N vðsðtÞ; pðtÞÞ þNbndvbndðtÞ ð15eÞ

with the initial condition xð0Þ ¼ sextð0Þ ��sext. The

external metabolites sext are now hidden in the varia-

bles x. Altogether, this equation system consists of:

(a) a biochemical model describing the subsystem with

external fluxes vbnd (Eqn 15e); (b) a linear model of the

standard form (Eqn 13), describing the environment

(Eqns 15b and 15c) and (c) instructions on how to

match both modules (Eqns 15a and 15d).

Reducing the environment model

After translating our model into the form (Eqn 15), we

are ready to reduce the external concentrations to a

smaller number of variables. The basic idea of model

reduction as used here will be summarized in this para-

graph: we consider a dynamic linear system of n state

variables xi, which are controlled by m input variables

uk and can be observed via the p output variables yl.

The time behaviour of x and y is described by a linear

equation system of the form (Eqn 13) where the matrix

A is stable, that is, all its eigenvalues have negative real

part. In this setting, n is assumed to be quite large and

the dimensions of the input and the output space are

much smaller than n (m, p � n). Without loss of gener-

ality, we have assumed that for u ¼ 0, the system has a

steady state at x ¼ 0. For fixed initial conditions, any

time course u(Æ) of the controlling variables leads to a

time course y(Æ) of the observables.
In model reduction, we aim at replacing the system

(Eqn 13) by a lower-dimensional system of order r

(r � n) that yields a good approximation of the input–

output relationship. First of all, the input–output rela-

tionship can be exactly represented by a system with

transformed variables ~x. If T is an invertible n · n

matrix, we can apply the transformation:

x ! ~x ¼ Tx

A ! ~A ¼ TAT�1

B ! ~B ¼ TB

C ! ~C ¼ CT�1

without changing the input–output relation between

u(Æ) and y(Æ). Of course, the initial value x0 must also

W. Liebermeister et al. Complexity reduction of biochemical networks
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be transformed. For a chosen dimensionality r, we can

now split T ¼
�
T1

T2

�
; T�1 ¼ S1S2ð Þ with an r · n matrix

T1 and an n · r matrix S1. The transformation

x ! ~x ¼ T1x

A ! ~A ¼ T1AS1

B ! ~B ¼ T1B

C ! ~C ¼ CS1

ð16Þ

yields a reduced model of dimension r

_~xðtÞ ¼ ~A~xðtÞ þ ~BuðtÞ; t > 0; ~xð0Þ ¼ ~x0
~yðtÞ ¼ ~C~xðtÞ; ~yðtÞ ¼ ~C~xðtÞ þ ~D~uðtÞ; t � 0

ð17Þ

that approximates the input–output relation. We use

balanced truncation [2] to find reduced representations
~A; ~B; ~C; ~D that yield a good approximation of the full

system. The basic idea behind balanced truncation is

outlined in the methods section.

Response coefficients

Metabolic response coefficients can be computed for a

reduced system of the form Eqn 15. We assume that for

some reference choice p ¼ p0 of the parameter vector,

the equation system has a stable steady state at sss
xss

� �

with stationary fluxes vss ¼ v(sss, p). The matrices of

metabolic response coefficients are defined as the deriva-

tives RS ¼ ¶sss/¶p, RJ ¼ ¶vss/¶p, Rx ¼ ¶xss/¶p of the

steady-state quantities sss, xss, and vss with respect to the

parameters p. The matrix of partial derivatives is defined

by (¶y/¶x)ik :¼ ¶yi/¶xk. The response coefficients read:

RS ¼ �½Neþ NbndðD� CA�1BÞP��1

�½Nep þ NbndðDp� CA�1BpÞ� ð18Þ

RX ¼ �A�1ðBPRS þ BpÞ ð19Þ

RJ ¼ eRS þ ep ð20Þ

if the matrix inverse in Eqn 18 exists. (The derivation

can be found in the Appendix). Traditionally, RS and RJ

have been computed for systems with a fixed environ-

ment [10]. Equation 18 differs from the known formula

RS ¼ �ðNeÞ�1Nep ð21Þ

by the additional term Nbnd(D – CA)1B) P in Eqn 18,

which describes a feedback via the environment, and

by the term Nbnd(Dp ) CA)1Bp) describing the param-

eters’ influence on the environment. If the connections

between subsystem and environment are neglected, for

instance, if Nbnd vanishes, then the standard formula

(Eqn 21) is reobtained.

Examples

Small reaction chain

To illustrate the whole process of model splitting, linear-

ization, and reduction, we consider a small chain of four

metabolites S1, S2, S3, and S4:

The reactions R1 and R2, which are catalysed by dif-

ferent enzymes, follow irreversible Michaelis–Menten

kinetics (MM). Reactions R3 and R4 follow reversible

Michaelis–Menten kinetics (MM), reaction R5 is a

fixed inflow, and reaction R6 is irreversible with mass-

action kinetics (MA).

The time courses of the metabolite concentrations

obey the differential Eqn 1 with the stoichiometric

matrix:

N ¼

�1 1 0 0 0 0
1 �1 �1 0 0 0
0 0 1 �1 0 0
0 0 0 1 1 1

0
BB@

1
CCA ð22Þ

and the reaction velocities

v1 ¼ V1s1= KM
1 þ s1

� �
v2 ¼ V2s2= KM

2 þ s2
� �

v3 ¼
Vþ
3

Kþ
3
s2 � V�

3

K�
3
s3

1þ s2
Kþ
3
þ s3

K�
3

v4 ¼
Vþ
4

Kþ
4
s3 � V�

4

K�
4
s4

1þ s3
Kþ
4
þ s4

K�
4

v5 ¼ V5

v6 ¼ k6s4

ð23Þ

For simplicity, all kinetic parameters were set to 1

ðV1;K
M
1 ;V2;K

M
2 ;Vþ

3 ;K
þ
3 ;V

�
3 ;K

�
3 ;V

þ
4 ;K

þ
4 ;V

�
4 ;K

�
4 ;V5; k6Þ:

The vectors of stationary concentrations and fluxes

read S ¼ (1, 1, 1, 1)T and J ¼ (1 ⁄2, 1 ⁄ 2, 0, 0, 1, 1)T,
respectively. For model reduction, we assume that

metabolites S1 and S2 and reactions R1 and R2 form

the subsystem, with metabolite S2 as the communi-

cating metabolite, while the remaining metabolites and

reactions form the environment. In the above model

scheme, this is indicated by boxes just like in Fig. 1.

The matrices in the equation system (Eqn 15) then

read:

S1 S2 S3 S4

R1(MM)

R2(MM)

R3(MM) R4(MM)
R5(fixed)

R6(MA)

Complexity reduction of biochemical networks W. Liebermeister et al.

4038 FEBS Journal 272 (2005) 4034–4043 ª 2005 FEBS



P ¼ 0; 1ð Þ

N ¼
�1 1

1 �1

� �

Nbnd ¼ 0;�1ð ÞT

A ¼ 1=3
�2 1

1 �4

� �

B ¼ 1=3 1; 0ð ÞT

C ¼ 1=3 �1; 0ð Þ
D ¼ 1=3

ð24Þ

Figure 2 shows simulation results for the system and

different reduced versions of it. The calculation, and

all the following ones, were done in matlab. Initially,

all variables were set to half of the full system’s

respective steady-state concentrations. The figure

shows time courses from the full model (s), from the

isolated subsystem (- - -), and from a larger isolated

subsystem containing metabolites S1, S2, and S3 (*).

Further, we consider the model with a linearized envi-

ronment without dimension reduction (dotted), as well

as reduced models with dimensions 0 (Æ – Æ) and 1 (––).

The simulations show that the linearized model yields

a good approximation of the full model, after being

reduced to only one dimension. The isolated subsystem

and the reduced system with no effective variables

yield much steeper time curves, while the larger subsys-

tem, treated in isolation, yields intermediate results.

It is an interesting question whether a model of the

environment should be taken into account even if it is

not fully reliable. To elucidate this for the present exam-

ple, we studied the effect of parameter uncertainties in

the environment. Figure 3 compares the isolated model

(dashed) to different simulations of the reduced model

(1 dimension) with random choices of the parameters.

To obtain a fair comparison, we ensured that both kinds

of models yield the same steady state. Hence, we chose

the random parameters as follows: three random num-

bers z1, z2, z3 were chosen independently in the range

between 0.5 and 2, with uniform logarithmic values.

Then all parameters of reaction R3 were scaled (multi-

plied) by z1, all parameters of reaction R4 were scaled

by z2, and the parameters of reactions R5 and R6 were

scaled by z3. Figure 3 shows that, despite the noisy

parameters, all reduced models (50 simulations) yield

better approximations of the true dynamics (––) than

the model with fixed external concentrations (- - -).

Interpreting the variables in terms of external

concentrations

Each of the reduced variables obtained by balanced

truncation represents a certain linear combination of the

original external variables. To illustrate the meaning of

the reduced variables, we consider a subdivision of the

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

isolated
reduced, no variable
larger, isolated
original
reduced, 1 variable
linearised

isolated
reduced, no variable
larger, isolated
original
reduced, 1 variable
linearised

Fig. 2. Model reduction of a small chain of reactions (see text). The

reduced model yields an excellent approximation, while imposing

fixed external concentrations compromises the simulation results

considerably. Left, time courses of variable S1. The lines represent

different models: the isolated subsystem with fixed environment

(- - -), the reduced model with no environment variables (Æ - Æ), the

isolated subsystem containing metabolites S1, S2, and S3 (*), the

full model (solid line with circles), the reduced model with dimen-

sion 1 (––), and the model with a linearized environment (� � �). Right,

the same, for variable 2. Time and concentrations are measured in

arbitrary units.

Fig. 3. Modelling an environment with parameter uncertainty. The

diagrams show simulation results from the same metabolic model

as in Fig. 2. Top, the solid line with circles shows time courses of

the variable S1. Even with noisy parameters (see text), all reduced

models yield a better approximation (50 simulation runs, shown by

dots) of the true dynamics than a model with fixed external concen-

trations (dashed line). Bottom, the same, for variable S2.
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glycolysis pathway, defined according to the KEGG

database [16] (Fig. 4, top left). The aim of this analysis

is not to model glycolysis with realistic kinetics, but to

illustrate the transformation to reduced variables for a

realistic metabolic network topology. A part of the net-

work (2-phospho-d-glycerate and below) was arbitrarily

chosen as the subsystem, while all upstream reactions

form the environment. For simplicity, we assumed

reversible mass-action kinetics with k+ ¼ k – ¼ 1 for all

reactions. After computing the steady state, we trans-

formed the environment to balanced coordinates. The

transformation matrix S1 in Eqn 16 represents an

approximate mapping from the transformed variables

to the original variables, that is, the external metabo-

lites. Figure 4 shows the transformation weights

(columns of S1) for the leading three variables (x1, top

right; x2, bottom left; x3, bottom right). It turns out that

the first and third variable represent mainly metabolites

near the boundary, while the second variable represents

a mode in which 2,3-bisphospho-d-glycerate and 3-

phospho-d-glycerate at the boundary are increased,

while all other metabolites are decreased. This localiza-

tion at the boundary may be a general feature of the

dynamical modes that couple biochemical subsystems.

Discussion

Disintegration of metabolic models into subsystems

has been pioneered by modular response theory [9,17],

which studies how the steady state of modular systems

Fig. 4. Reduced variables in a biochemical network. Top left, glycolysis network from KEGG [16]. In this example, reactions are described by

mass-action kinetics with arbitrary parameters (all values equal 1). The model consists of a subsystem under study (phosphoenolpyruvate and

downstream) and an environment (the rest). The entire network is split into regions (compare Fig. 1) indicated by colours: interior (orange),

the subsystem boundary (brown), the environment boundary (dark blue), and the exterior (light blue). Right, transformation weights for the

first three external variables (1, top right; 2, bottom left; 3, bottom right). Positive and negative values are shown by the reddish and bluish col-

ours, respectively, while the circle areas denote the absolute values (arbitrary scaling). With the first and third variable, the metabolites near

the boundary carry the highest weights. The sign of the second variable changes between metabolites close to and far from the border.
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responds to changes of the model parameters. The

analysis consists of two steps: first, the individual sub-

systems are described by effective, linear input–output

relationships. Second, the modules are coupled based

on their input–output relationships while all variables

internal to the modules can remain hidden. Also in

our dynamic approach, subsystems interact via a few

communicating metabolites while the remaining varia-

bles are hidden inside the modules. A large model is

split into subsystems, and linearization and complex-

ity-reduction are applied to those ) possibly large )
parts that are not in the focus of interest. In contrast

to modular response theory, we retain a dynamic des-

cription of the environment, which represents the most

important modes of dynamics around a steady state.

We also characterized the steady-state behaviour of

the reduced system by metabolic response coefficients.

Selective model reduction combines advantages of

large-scale modelling with the modelling of isolated,

well-understood systems. The compromise between

numerical effort and approximation error can be tuned

by choosing the dimensionality of the environment

model. In this article, we considered a splitting into

only two parts: one module that is maintained and

another module to be reduced. Of course, the method

readily applies to larger numbers of modules. The

main assumptions are that: (a) the environment model

exhibits a stable steady state for the given kinetic

parameters; and (b) that the perturbations exerted by

the subsystem are small.

Aiming at model reduction, we chose balanced trun-

cation for a number of reasons: it allows for controlling

the output error, that is, the difference of outputs

between the original and the reduced system for the

same input. Model reduction techniques can be applied

to large systems: so far, we considered an algorithm

implemented in matlab. With the corresponding

slicot routines [18], systems of about 2000 variables

can be reduced on a desktop computer with a memory

capacity of 1 GB. The extension pslicot for parallel

computing [19] can deal with dimensions of several tens

of thousands on small PC clusters. To exploit some

special structure of the underlying system, for instance,

sparsity of the system matrix, specialized methods like

ADI-based iterative methods [20] or methods based on

hierarchical matrix arithmetic [21] can be applied.

Model reduction does not preserve conservation

relations that couple metabolites from both subsystem

and environment. This is quite natural because the

environment variables are no longer individually des-

cribed, so these conservation relations actually lose

their meaning. However, a loss of the conservation

relations can have a visible effect on individual subsys-

tem metabolites: they may exceed maximal concentra-

tions set by the initial conditions. Let us illustrate

this by a hypothetical example: consider a network

containing a reaction A+ADP fi B+AMP and an

energy-supplying reaction ATP « ADP (where inor-

ganic phosphate is not explicitly considered). The

remaining reactions are not related to ATP, ADP, or

AMP. If all metabolites are modelled explicitly, the

concentrations cATP, cADP, and cAMP form a conserva-

tion relationship—their sum remains constant. Let us

assume that the energy source ATP starts with a high

concentration and is converted into ADP and AMP.

As ATP goes down, the supplying reaction will

become slower, and cADP + cAMP stops rising before

it reaches the upper limit set by cAMP(0) +

cAMP(0) + cAMP(0). What happens if ATP is treated

as an external metabolite? Again, the levels of ADP

and AMP start rising, but ATP does not decrease, and

at some time point, cADP(t) + cAMP(t) may exceed their

upper limit. The fixed concentration of ATP leads to a

bad approximation of the supplying reaction, which

keeps on delivering ATP after the limit is reached. With

a reduced environment model, we can generally expect

a better approximation of the communicating flux

velocities: the conservation relation will still be violated,

but to a smaller extent—and again, the approximation

error can be controlled by the choosing the dimensio-

nality. Nevertheless, if a certain conservation relation

has to be exactly fulfilled, then all participating metabo-

lites should be included into the subsystem.

What is the meaning of the reduced variables in bio-

chemical systems? Practically, they represent correction

terms beyond the assumption of fixed external metabo-

lites. Unlike the eigenmodes of the Jacobian [13], they

are chosen such as to optimally mimic the behaviour of

the environment, as seen by the subsystem. Interestingly,

the first reduced variables in the glycolysis network

accounted for differences between the boundary layer

and the more distant parts. This may be explained by

the fact that perturbations are damped and do not pen-

etrate deeply into the environment, and that this aspect

of the dynamics is then emphasized by balanced trunca-

tion. Consequently, we can expect that distant parts of

the environment will influence the subsystem’s dynamics

only weakly, and that their exact modelling is probably

of minor importance. In reverse, this might also justify

the very fact that we started with a certain finite-sized

environment, and not an even larger model.

One may argue that currently, the crucial issue in

cell modelling is not the numerical effort of simula-

tions, but the lack of kinetic data that are necessary to

build the models. So why do we need model reduction

at all? First, it should be noted that the speed-up in

W. Liebermeister et al. Complexity reduction of biochemical networks
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simulations can be quite considerable: once a reduced

model with much smaller dimension than the original

system has been established, further computations

require much less storage and CPU time. This can

become crucial in parameter fitting with maximum

likelihood or MCMC methods, which require a large

number of iterated simulation runs. For parameter

fitting, several scenarios are conceivable: (a) an environ-

ment with fixed parameters is reduced to speed up the

estimation of the subsystem’s parameters; (b) some of

the environment parameters remain unspecified during

model reduction, in order to estimate them later along

with the subsystem parameters; (c) The matrices A, B,

C, and D are regarded as effective parameters without

referring to a specific environment model and are fitted

together with the subsystem parameters. Second, our

simulations show that accounting for the environment

can improve the modelling results considerably, even if

the kinetic parameters are not exactly known. Thus

even in a stage where no reliable model parameters for

the environment are available, a model-reduction

approach may outperform the modelling of isolated

subsystems with fixed external concentrations.

Methods

Balanced truncation

Closely connected with the stable, continuous-time system

(Eqn 13) are the two matrices P and Q, the infinite reach-

ability Gramian and the infinite observability Grampian:

P :¼
Z 1

0

eAtBBTeA
Tt
dt; Q :¼

Z 1

0

eA
T t CTCeAt dt

The Gramians can be interpreted in terms of energies: the

minimal control energy Ec for the transfer from the zero

state to a state �x over infinite horizon is

E2
c :¼ inf

u2L2

Z 1

0

uðtÞTuðtÞdt ¼ ~xTP�1~x

whereas the largest observation energy Ec produced by

observing the output of the system with initial state xo over

infinite horizon is

E2
o :¼ sup

y2L2

Z 1

0

yðtÞTyðtÞdt ¼ xT0Qx0:

Model reduction by balanced truncation [2] is based on a

special transformation into so-called balanced coordinates.

The basic concept of balancing is finding a basis in which

the two Gramians are equal and diagonal

P ¼ Q ¼ diagðr1; . . . ;rnÞ;
with ordered diagonal entries, the Hankel singular values of

the system. In these new coordinates, states that are diffi-

cult to control are also difficult to observe and vice versa.

Model reduction by balanced truncation removes these

state components; they are the states which are least

involved in the energy transfer

E :¼ sup
u2L2

R1
0 yðtÞTyðtÞR 0

�1 uðtÞTuðtÞdt
¼ xT0Qx0

xT0P�1x0

from past inputs u to future outputs y. The norm of the

error is bounded by twice the sum of the neglected singular

values

sup
u2L2

ky � ~yk2
kuk2

� 2
Xn
k¼rþ1

rk:

The balancing transformation T, in particular the parts T1

and S1 of the transformation mentioned in ‘Reducing the

environment model’, are computed via the Cholesky factors

of the two Gramians P and Q:

P ¼ STS;Q ¼ RTR:

We obtain the two transformation matrices after a singular

value decomposition of SRT:

SRT ¼ U1U2ð Þ R1 0
0 R2

� �
VT
1

VT
2

� �
;R1 ¼ diag r2

1; . . . ;r
2
r

� �

By

T1 ¼ R
�1

2
1 VT

1 R and S1 ¼ STU1R
�1

2
1 :

Model reduction by balanced truncation has some desirable

properties: the reduced system (Eqn 17) remains stable and

has a low approximation error with an a priori known

upper bound. Therefore, the size of the reduced system can

be chosen adaptively depending on the permitted error size.

If we are interested in preserving the passivity of the system,

that is, to obtain a reduced system which cannot produce

energy internally, we have to apply another model reduction

routine called positive real balancing (see [22] and references

therein). Another class of model reduction methods are the

Krylov-based methods. These methods do not preserve sta-

bility, have no given error bound, but have good numerical

properties, (see [23]). For a broad collection of survey

papers on model reduction, see [20], where also a couple of

benchmark examples are presented.
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Appendix

A derivation of the response coefficients (Eqns 18–20)

We rewrite Eqn 15 as

_x ¼ Axþ BðPs��sbndÞ þ BpDp

_s ¼ Nvðs; pÞ þ Nbndð�vbnd þ Cxþ DðPs��sbndÞ
þDpDpÞ ð25Þ

In steady state, the time derivatives vanish, so we set

the left hand sides to zero

0 ¼ AxSS þ BðPsss ��sbndÞ þ BpDp

0 ¼ Nvðsss; pÞ þ Nbndð�vbnd þ Cxss þ DðPsss ��sbndÞ
þ DpDpÞ ð26Þ

Now we differentiate the equations by Dp and obtain

0¼ ARX þ BPRS þ Bp

0¼ NðeRS þ epÞ þ NbndðCRX þ DPRS þ DpÞ
¼ ½NeþNbndðD� CA�1BÞP�RS

þ ½Nep þNbndðDp � CA�1BpÞ�

ð27Þ

As A is invertible by assumption, Eqn (27) yields

Eqn (19). Inserting Eqn (19), Eqn (28) and solving for

Rs yields Eqn (18). Eqn (20) follows from differenti-

ation of vss, using the chain rule.
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