Independent component analysis of gene expression data
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We applied independent component analysis (ICA) to gene expression data, inferring hidden variables which we term “expression modes”. According
to the ICA model, the modes exert linear influences on the genes with minimal statistical dependences between them. The dominant modes obtained
from a set of yeast data could be related to separate biological functions. A projection to these modes helps to determine sets of coregulated genes,

to visualize the data and to compress them in a biologically meaningful way.

The problem

Cells react to external stimuli and to their internal needs by the induction
or repression of genes. Genomic scale patterns of gene expression can be
observed using high-throughput methods like the microarray technique. One
may hope that correlations in these large data sets reveal causal relation-
ships between the genes. This is the main idea behind various kinds of
genetic network models, like linear, nonlinear, or discrete dynamical systems,
or Bayesian networks. However, it seems that until now the microarray data
are too noisy and that the number of experiments is not yet sufficient to
reconstruct detailed large-scale genetic networks. Thus, methods are needed
to reduce large amounts of data to their most relevant aspects, in particular
the coregulation of genes and characteristal patterns of cell sample types.
One has to keep in mind that with all multivariate methods the results my
depend heavily on data metric, and thus on the normalization scheme used.

Independent component analysis (ICA)

Independent component analysis (see [6]) determines a linear decomposition X = S A with
minimal statistical dependences (as quantified by the mutual information) between the “in-
dependent components” (columns of S). As a consequence, the single components become
as “informative” as possible, which means that their distributions have minimal entropies. In
contrast to PCA, ICA introduces a non-orthogonal basis to take into account data structure
beyond the linear correlations, The components have no natural order, and they are scaled
to unit variance by convention. In the fastica algorithm used [7], the expensive calculation of
entropies is avoided by using a “contrast” function that compares the components’ distribu-
tions to the normal distribution.

Yeast data from Eisen et al. (1998)

The gene expression matrix X contains intensity ratios related to relative
mRNA levels of 2467 yeast open reading frames (ORFs). The samples repre-
sent timecourses different situations: cell replication cycle (synchronization
with the mating o factor or using small G1 cells obtained by elutriation),
sporulation, heat shock, response to a reducing agent, cold shock and di-
auxic shift from fermentation to respiration. We preprocessed the data by
shifting the gene and sample means to zero, replacing the missing values by
zeros and projecting the data to their first 20 principal components. The
higher principal components are contained in the additive noise term Z.
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Linear models of gene expression data

Clusterings (for instance hierarchical, k-means, self-organized maps) are a widely used
method to determine sets of coregulated genes or sets of cell samples with similar gene
expression. In a more detailed view, each gene's expression depends on a group of
cellular regulators that may act together in some nonlinear way. Linear models implement
the idea of a combinatorial control, describing the expression levels of genes as linear
functions of common hidden variables.
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Technically, the gene expression matrix X is split into a product X = S A, representing
each gene profile (row of X') as a linear combination of “mode profiles” (the rows of A),
the coefficients (“components”) being contained in the columns of S. Linear models like
principal component analysis (PCA) [1], the plaid model [3], REDUCE [4], or ICA rely on
different criteria to determine the modes. It would be desirable that some of the modes
could be related to biological causes of variation, like regulators of gene expression, cellular
functions, or responses to experimental treatments. The components would then describe
the modes’ influences on the genes. Once a small number of effective key variables has
been identified, they max be described by simple dynamic models (see for example [5]).

Principal component analysis (PCA)

Principal component analysis rotates the data to a new orthonormal basis which is formed
by the eigenvectors of the data covariance matrix. In this new basis, linear correlations are
removed, and a minimal number of the new variables ( “principal components”) explains a
maximal amount of data variance. PCA is widely used to reduce the data dimensionality,
while maintaining a maximal amount of variance and filtering out variation that is likely
to represent noise. Usually, there is no obvious biological interpretation for the single
components.
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We interpret the independent components (columns of S) as influence weights of
hidden variables termed “expression modes”.
inant components show distributions with large tails, indicating specific groups of
“target” genes. For each component, we determined these targets by excluding the
most outlying genes until all remaining genes were inside n, = 4 standard deviations
from their median.
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Due to their high contrast, the dom-

Expression mode profiles
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Mode profiles (rows of A, samples shown on the abscissa) from yeast data
obtained by ICA. The different gene profiles (rows of X') are represented as
linear combinations of these basis patterns (up to a noise term). The colors
indicate different experiments.

Target genes

Mode 1

ribosomes RPL10 RPL11A RPL11E RPL12A RPL12B RPL13A RPL14A RPL14B RPL15A RPL15E RPL16A RPL16E RPL1TA RPL1TE
RPL1BA RPL1SE RPL19A RPL1SE RPL1A RPL1E RPL20A RPLIDE RPL21A RPL2IE RPL22A RPL23A RPL23B RPL24A RPL24B
RPL25 RPL2GEB RPLITA RPL2TE RPL23 RPLIE RPL3 RPL30 RPL3I1A RPL33A RPL3I3B RPL34E RPL35A RPL35B RPL3ITA RPL3TE
RPL38 RPL40B RPL41A RPL42A RPL42B RPL43A RPL4A RPLS RPLGE RPLTA RPLTB RPLEA RPLEE RPLSA RPLOE RPPO RPP1B
RPPZA RPPIE RP50A RPS0B RPS510A RPS11A RPS12 RP513 RPS514A RPS15 RPS516B RPS17B RPS18A RPS519A RPS198 RPS1A
RP51E RP52 RP520 RP521A RP521E RP522A RP522B RP523A RP523B RP524A RP524B RP525A RP525E RP526A RPS26B RPS28A
RP5288 RP520A RPS20E RPS3 RP54A RPS4B RPSS RPS6A RPS6E RPSTA RPSTB RPSEA RPSSE RP50A RPSOB SIK1

protein synthesis EFT1 EFT2 YEF3
protein degradation RP531

signal EGD1

stress 5582 YHE1

Mode 2

ecll cyele COC? CDC21 CDC4S COCS CLBS CLB6 CLN1 CLNZ
EGT2 GIC2 MSB2 RADS3 SWEL SWi4 , down: CDC20 CDCS
CLB2

dna replication CTF4 DPB2 POL1 POL12 POL? POL3ID PRIZ
RFA1 RFAZ RNR1 DUN1 MSH2Z MSHE6 OGG1 PMS51 RAD2IT
RADS]1 RHC18 RNR3 , down: ALK1

chromatin HIF1 SMC3

stress JEM1 SAT?2

cytoskeleton BNI4 BUDS RSR1 SPH1 SR04 , down: BUD4
CYHK? 1G]

meiosis BBP1

cell wall C512 , down: CHS2 CWP1

transcription RNH35

|.|:n::|l|.:ll:| synthesis and t.urgd.iug SEN34 GOGE MNNT OCH1
SURL , down: NCE102

metabaolism 4 transport PHOS HXT? PYC1 , down: PDRS
signal ASF1 ASF2 HCM1 5PT21 5V51, down: ACE? H5T3
rest KIM2

Mode 4

cdl eycle CLE1 CLE2 PD51 5IM1 |, down: CDC46 CLN3 EGT2
FAR1 GIC2 PCL2

dna replication ALK1 , down: MCM3

chromatin HHF1 HHF2 HHO1 HHT1 HHT2? HTAL1 HTA2 HTA3
HTE1 HTB?

cytoskeleton SPCS3 5TU? , dowmn: CHS1

cedl wall CWP1 ECM33 FKS1 WSC? |, down: (T51
transcription FIR1

protein synthesis PMT4

stress , down: CTT1 HSP150 H5P26 TIP1 YGP1

mating , down: ASH1 GPA1 5TE?

sugar metabolism , down: ALDG

metabolism , down: PHO11 PHOS

signal 5V51

Mode 6

mating, down: AFR1 FIG1 FIG2 FUS1 FUS2 FUS3 KARS KAR4
KARS MID2 5572 5TE?

cytoskeleton, down: CH51 CIK1 RV5161

meiosis, down: IME4

cdl cycle CDCH CLB1 CLB? |, down: FAR1 PCL2
cell wall CH52 CWPL |, down: CHS53 CT51 GFAL
stress YGP1

protein synthesis MNNL , down: KTR2

pn:ll.:ll:l tn.l.‘!u‘li.l:lg NCELQ2

metabolism ELO1 GCV1 CAR2 PHO11 PHO12 PHOS
transport FTR1 PHO&

signal 5V51 , down: HAP4

Mode 3

eell eyele APC4 CDC10 COC20 COCZT COC3 CDCS CLB3 CLB4
CLEG

dna replication PES4 DHS1

cytoskeleton BNR1 CNMGT

cell wall CWP1

transcription MIP6

protein synthesis SOL1

sugar metabalism GCR3 GIP1 HXT10 HXT14 PIG1
respiration GDS51

transport CCC1 GNPL 5UT1 , down: MEP2

Maode §

transeription MAK1E6 MRT4 NMD3 RPA4S
ribosomes DEP3 HCA4 LCPS NOP4 RLPT ROK1 S0F1
protein synthesis PLS1 ENF1 HMT1
protein targeting BFR2 N5R1

metabolism AAHT

transport PHOE4

rest NOP2 URAT

cell cycle, down: EGT2 TF51

cell wall, down: CT51 GLC3

stress, down: H3P30 HSPTE

sugar metabolism, down: GIF? GLK1 PGMZ

Mode T

cell cycle, down: EGT2 PCLS SIC1

cytoskeleton, down: BUDS CHS1

meiosis, down: RME1

cell wall CWPL , down: CTS51 EXG1 SUN4
mating, down: ASH1

stress CTT1 H5P26 55A3 55A4 , down: CTAL HSP150 HSP30
protein targeting NCE103

sugar metabolism ALDG

I.tssl.lil:nt.iutl NCA3 CIT1 IDH1 PYC1

metabolism ARDS DIPS CAR2 , down: FAA4 FAS]
transport PDR15

rest, down: CUP1A CUP1B

The first modes represent biological functions

mode | induced functions downregulated functions
1 |ribosomes

S-phase, replication

cell division, glucose repression
histones, cell wall

protein production

M-phase, cytoskeleton

stress, mating
cell wall, stress
mating
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stress, TCA cycle

The first 7 expression modes act on sets of genes related to particular
biological functions. Accordingly, the modes could be related to cell cycle
phases (2 and 4), protein synthesis (1), sporulation (3), stress (5), and to

the mating response (6).
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Conclusion

ICA infers a non-orthogonal basis that can be used to visualize data, to reduce their di-
mension, and to define data metrics that highlight relevant aspects in the data. Although
ICA uses no external knowledge, the modes obtained in our example could be related to
biological functions.

Can ICA generally be expected to detect biological modes? In particular, is the indepen-
dence postulate a plausible assumption to determine effective regulators or global modes
of gene expression? One may expect biological regulators to act on specific (though
overlapping) sets of genes. Accordingly, their influences on all genes should show a “su-
pergaussian” distribution with heavy tails (related to the influenced genes) and a high
peak in the center. ICA is sensitive to such modes, as their influences are far from being
normally distributed.

PCA expression modes
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Mode profiles (basis vectors) from yeast data obtained by PCA.

Sorting the independent components
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We expect to find among the independent components some
which are of biological significance. These can be supposed to
show large values of variance (abscissa) and contrast (ordinate),
a measure of information content. We sorted the independent
components according to a linear combination of both quanti-
ties.
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