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Biochemical pathways and their environment

Let us suppose we want to simulate the TCA cycle.

Can we neglect the surrounding pathways?

Assume their metabolite concentrations are fixed?

Or do we have to model the whole cell around it?

Biochemical pathways are embedded in larger networks (the “environment”). In mathematical models,
external metabolites belonging to the environment are often described by fixed concentrations. In
reality, the dynamics of the system affects the external metabolites, and these may act back on the
system, creating a feedback loop. To capture this behaviour, the system could be enlarged. We present
an alternative, namely to replace the environment model (which has to be known) by an effective
model that mimicks its behaviour “as seen by the subsystem”. The effective model is constructed (1)
by linearising the environment model around a steady state and (2) by model reduction by balanced
truncation.

Reducing the peripheral parts of metabolic models

A biochemical system follows the differential equations

ṡi =
∑

l

Nil vl(s, p)

with si metabolite concentrations
N : stoichiometric matrix
vl reaction velocities
pm kinetic parameters
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It consists of a subsystem and an environment: given sbnd(t), the environment model determines vbnd(t).

We propose to replace the environment by an effective model, which is linear and low-dimensional [2]:

• Choose reference values s̄bnd leading to a steady state (concentrations s̄) of the environment.

• Linearise the environment dynamics around the reference state, setting

vl(s + ∆s, p + ∆p) ≈ vl(s̄, p̄) +
∑

k

εlk ∆sk +
∑

m

πlm ∆pm

• Apply linear model reduction to the environment. The communicating metabolites u = ∆sbnd act as
the inputs, and the communicating reactions y = ∆vbnd are the outputs.
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We obtain an equation system

u(t) = P s(t) − s̄bnd

ẋ(t) = A x(t) + B u(t) + Bp∆p(t)

y(t) = C x(t) + D u(t) + Dp∆p(t)

vbnd(t) = v̄bnd + y(t)

ṡ(t) = N v(s(t),p(t)) + Nbnd vbnd(t)

where
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Model reduction by balanced truncation

Assume a stable linear system

x(t)u(t) y(t)
high−dimensional

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

Each input time course u(t) yields
an output time course y(t).

Model reduction finds a reduced system

x(t)u(t) y(t)~ ~
low−dimensional mimicks y(t)

˙̃x(t) = Ãx̃(t) + B̃u(t)

ỹ(t) = C̃x̃(t) + D̃u(t)

with a low-dimensional x̃ = Tx

to approximate the output y(t), given u(t).

Balanced truncation [3]
first chooses a bijective transformation x → x̃ = Tx (see box).
The new variables x̃i are ordered according to their contribution
to the information transfer from inputs to outputs.

Then, x̃i for i > r are neglected (“truncated”).
The approximation error can be controlled by
adjusting the dimensionality r of the reduced system.

In balanced truncation, we choose a transforma-
tion matrix T such as to make the Gramian matri-
ces P and Q equal and diagonal. The Gramians
are determined by the Lyapunov equations

ATP + PA + BBT = 0

ATQ + QA + CCT = 0

Balanced truncation software is available at http://www.tu-chemnitz.de/mathematik/industrie technik/software/software.php

Reducing a small reaction network

S1 S2 S3 S4

R1(MM)

R2(MM)

R3(MM) R4(MM)
R5(fixed)

R6(MA)

MM Michaelis-Menten kinetics

MA mass-action kinetics

Right: The graphs show time courses of s1 (left) and s2 (right) in

arbitrary units. The lines show the original system (◦) and different

approximations. Model reduction with one reduced variable (-) is

much more accurate than “isolated” modelling with fixed external

concentrations. For simplicity, all kinetic parameters were set to 1.
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What do the reduced variables represent?

We consider a network of carbohydrate metabolism and
TCA cycle (from the KEGG data base [1]). The TCA
cycle has been chosen as the subsystem of interest.
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Model decomposition

The chemical reactions have been modelled by
Michaelis-Menten kinetics with arbitrary parameters.

The environment concentrations can be approxi-
mated by ∆sext ≈

∑
i x̃ibi. A reduced variable x̃i

corresponds to a pattern bi of metabolite deviations.

Weights of the concentrations (colour-coded
elements of bi) for the first 4 reduced variables

Summary

Balanced truncation highlights modes that dominate the environment’s dynamics
as seen from the system of interest.

Model reduction yields a practical way to improve simulations:

•More accuracy - as compared to modelling with a fixed environment

• Less computational effort - as compared to the full model

• The trade-off between accuracy and speed can be controlled by choice of dimensionality.

... and fast simulations can be vital for parameter estimation.

Requirements/drawbacks:

• The method requires a mathematical model of the environment with a stable steady state.

• Two approximations are made: linearisation and model reduction

• Conservation relations that couple subsystem and environment may be violated.
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