



### Modelling and control of biochemical systems

Wolfram Liebermeister Max Planck Institute for Molecular Genetics Berlin







Wolfram Liebermeister Max Planck Institute for Molecular Genetics Berlin

# Trouble with complex systems

Things we understand easily

Separate entities Small numbers Direct effects Causal chains





... but living systems are

Continuous Complex Dynamic Adaptive Stochastic Evolved















# Dynamic laws for metabolic networks

#### derived from balance of concentrations



# Dynamic laws for metabolic networks

#### derived from balance of concentrations



**Reaction velocities** 

 $v_1 = v_1(a, b)$  $v_2 = v_2(b, c)$ 

Balance equations  $da/dt = -v_1$   $db/dt = v_1 - v_2$  $dc/dt = v_2$ 

# Dynamic laws for metabolic networks

#### derived from balance of concentrations



**Reaction velocities** 

 $v_1 = v_1(a, b)$  $v_2 = v_2(b, c)$ 

Balance equations  $da/dt = -v_1$   $db/dt = v_1 - v_2$  $dc/dt = v_2$ 

## Levels of modelling in systems biology

- 1. Pathway analysis Flux balance, substance transformation,...
- 2. Kinetic modelling Parameter fitting, model selection,...
- 3. Control and bifurcation analysis Sensitivities, qualitative behaviour, ...
- 4. Optimality / Shaping by evolution Robust design, cost-benefit calculation,...
- 5. Model integration

Modularisation, experimental standards,...



## Essential views on complex systems

Modularity

Control analysis

Global modes



# Modularity

## Modularity

Basic assumption in natural sciences

Many biological systems look modular (and many don't)

The whole is more ... is more than the sum of its parts

Modular modelling calls for experimental standards





### SBMLmerge for computer-assisted model integration



#### Threonine pathway

KEGG chart "Glycine, serine and threonine metabolism"



http://sysbio.molgen.mpg.de/SBMLmerge/

### SBMLmerge for computer-assisted model integration





http://sysbio.molgen.mpg.de/SBMLmerge/

#### Turn modules into simple black boxes Model reduction by balanced truncation



Liebermeister W., Baur U., Klipp E. (2005), FEBS Journal, 272 (16), 4034 - 4043

# Sensitivity analysis

#### Metabolic control theory Overall effects of local perturbations

Change in concentration ?? Enzyme overexpressed !! 10 H.O POLYHEAS (pert 2) Change in flux ?? ACET OXALATE OXALYL CeA i lation conduct nothing

## Metabolic response coefficients

Summarising the infinite causal chains



#### Metabolic change

Altered concentrations? Redirected fluxes? First-order approximation  $\varDelta\,s_{i}\,{\approx}\,R_{p_{m}}^{s_{i}}\,\varDelta\,p_{m}$ 

 $\Delta p_{\rm m}$ 

# Spectral response coefficients

Systemic response to forced oscillations



#### Sine wave Perturbation















#### Perturbed Reaction

W. Liebermeister (2005), J. Theor. Biol. 234 (3), 423-438 Yeast glycolysis model: F. Hynne et al (2001), Bioph. Chem. 2001 94 (1-2), 121-63

### Spectral response coefficients

Resonance in noise spectra: a systemic property



W. Liebermeister (2005), J. Theor. Biol. 234 (3), 423-438 Network model: T. Wilhelm and R. Heinrich, J. Math. Chem. 17 (1995), 1–14

## Modes of collective behaviour

# Global modes in complex systems

Effective variables to describe collective motion



Vibration mode of an elastic plate

# Global modes in complex systems

Effective variables to describe collective motion



# Elementary flux modes

A quantitative definition for metabolic pathways



NADPH \* NADP -



S. Schuster et al (2000), Nat. Biotech. 18, 326-332

#### Model reduction is based on collective modes Balanced truncation preserves only the dominant global behaviour



Liebermeister W., Baur U., Klipp E. (2005), FEBS Journal, 272 (16), 4034 - 4043

# Global modes in microarray data

Gene expression during the cell cycle



Data from: P. Spellman et al (1998), Mol. Biol. Cell 9, 3273-3297

# Global modes in microarray data

Independent component analysis



#### **Network component analysis** Global modes reflect the activity of transcription factors



Transcription rates of amino acid biosynthesis genes Zaslaver et al (2004), Nat Genet 36, 486-491

#### **Network component analysis** Global modes reflect the activity of transcription factors



TF activities inferred from NCA Transcription network from RegulonDB **Promoter activities** 

Zaslaver et al (2004), Nat Genet 36, 486-491

#### **Inferring new regulatory interactions** Use putative connections and good fit of NCA model



Initial network: Known and putative arrows



Selecting of arrows supported by expression data

# Trouble with complex systems

Things we understand easily

Separate entities Small numbers Causal chains Direct effects





... but living systems are

Continuous Complex Dynamic Adaptive Stochastic Evolved

# Acknowledgements



#### Max Planck Institute for Molecular Genetics

Edda Klipp Simon Borger Marvin Schulz Jannis Uhlendorf Christoph Wierling





EMI-CD - European modelling initiative combating complex diseases pybios.molgen.mpg.de/EMICD



#### Weizmann Institute of Science



ENFIN European Network of Excellence www.enfin.org Uri Alon Alon Zaslaver Anat Bren Shai Kaplan Shalev Itzkovitz

## Metabolic response coefficients





#### Response coefficients

Global systemic response



$$R^{S} = (N\epsilon)^{-1}N\pi$$
  
Control coefficients matrix C<sup>S</sup>

### SBMLmerge helps to couple kinetic models



#### Annotate the model elements

String search in data bases Automatic recommendations

#### Check the model for problems

Syntax(low-level validity of SBML code)Semantics(annotations and their ontology)Mathematics(order of computation,...)Physics(thermodynamics, conservation laws, ...)Biology(parameter ranges, properties of organism,...)

#### Model merging, accounting for

Redundant model elements Conflicting information Logical cycles http://sysbio.molgen.mpg.de/SBMLmerge/

## ICA is a matrix decomposition

... based on the assumption of statistical independence



## NCA is also based on a matrix decomposition

... and accounts for the transcriptional network



Transcription rates experimental

Gene input weights connections constrained by network

### **Gene input functions** Example: Lac operon in E. Coli





Drawing from www.ncbi.nlm.nih.gov/books/ Alberts et al, Molecular biology of the cell

Y. Setty, et al (2003). Detailed map of a cis-regulatory input function. PNAS, 100(13):7702-7707

# Fuzzy metabolic networks

What if parameters are uncertain?





Parameters for reaction E1 are uncertain (statistical distribution)

Liebermeister W., Klipp E. (2005), IEE Proc. Systems Biology 152 (3) pp. 97-107

# Fuzzy metabolic networks

#### What if parameters are uncertain?



Probabilities of forward flux

Distribution of reaction velocities

## Fuzzy metabolic networks

Studying the effects of parameter variability



Log-normal, correlated parameter distributions

Liebermeister W., Klipp E. (2005), IEE Proc. Systems Biology 152 (3) pp. 97-107