Part 4: Protein cost and resource allocation in cells



The cell as a self-replicating factory
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How are proteins allocated to different cell processes?
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How do cells "spend their protein budget"?

E. coli proteome (continuous culture)
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How do cells "spend their protein budget"?

E. coli proteome (continuous culture)
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How do cells "spend their protein budget"?

E. coli proteome (continuous culture)
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The enzyme cost of metabolic fluxes



Enzyme cost minimisation predicts metabolite and enzyme levels
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Enzyme cost minimisation predicts metabolite and enzyme levels

Example model @ External
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Enzyme cost can be presented as a flux cost function

Flux profiles define enzyme cost functions Enzyme cost function on flux polytope
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Wortel et al., Preprint at BioRxiv doi.org/10.1101/111161



Elementary flux modes in a model of central metabolism

Model structure (“max-gr” EFM shown by colours)
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How do cells "spend their protein budget"?

E. coli proteome (continuous culture)
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Investments in metabolism or protein production?



"Sector model” of protein investments

(a) Protein fractions in the sector model (b) Schematic model of cell growth (c) Analogy to electric circuit
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Adapted from Scott et al. (2010)



Resource allocation in a simple self-replicating cell

« A “minimal self-replicator” that includes
L metabolism and enzyme production

biosynthesis pathway
« Optimizing resource allocation can

\ explain why cells shift from efficient to
— inefficient catabolism at high growth
R neff ah g

Substrate,,

Molenaar, D., van Berlo, R., de Ridder, D., & Teusink, B. (2009)
Molecular Systems Biology, 5, 323



Resource balance analysis:
Flux balance analysis, applied to an entire, growing cell

Nutrient
uptake

Enzyme is needed to Precursors and energy
catalyse fluxes for protein production

Dilution ~ growth rate

Q’ of protein

A. Goelzer and V. Fromion. Biochim Biophys Acta, 1810(10):978-988, 2011.



Resource Balance Analysis: Constraints and calculation

RBA implements three sets of constraints.

Mass conservation: chemical reactions (metabolic reaction,
protein synthesis) and boundary conditions (import/export,

creation of biomass).
— basic Flux Balance Analysis constraint.

Capacity constraints: a reaction flux can only be sustained if

there are enough enzymes (or ribosomes, chaperones).
— sets a price for every metabolic pathway.

Maximal density: every compartment holds a limited number

of molecular species.
— selection of most parsimonious pathways.

Calculation:

* Fix a growth rate and decide:

Can a steady (growth) state be maintained? — linear (i.e., FBA-like) problem

Py Y - \\\:f’ /)
f P AT 7

e Repeat this many times; find the maximal growth rate at which the problem can be solved

A. Goelzer and V. Fromion. Biochim Biophys Acta, 1810(10):978-988, 2011.



How can a cell reproduce itself?
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Initial questions for this lecture

* What does a living cell need to do to proliferate, i.e., to reproduce all its components?
* How can it do so in “cost-saving’ ways, given physical and biochemical limitations?
o If cells function “optimally”, how will they behave and what will they look like?

* How can we describe all this by mathematical models?



Mathematical descriptions of optimal states

(a) Cost-benefit optimization (b) Constrained optimization (c) Linear programming (d) Pareto optimization
[} ‘ ) X ‘ X2 ‘ f2‘
§ Bene/ﬂt g 2 Vg 1\ v,
m B P ~
) —
9% I vf,
Cost h vh vi
— \ ' |
Variable x X1 X1 f

Ingredients for an optimality-based (“economic”) cell model

« Network model (with variables to be optimised, and others that depend on them)
« An objective function to be minimised or maximised (biomass production, ..)
 Physical or logical relationships between variables (rate laws, stationarity, ..)
 Constraints, e.g., lower and upper bounds (constraint on protein density, ..)

Objectives and constraints can be exchangeable!
Objectives and constraints can “propagate” through the system!



Concelive a physically impossible superbug!

Conceive a cell or organism that — for the sake of this group work —
can defy one fundamental law of physics*.

Try to imagine how such an organism could function, what other restrictions
it could bypass, and what other adaptations it would accumulate in its further
evolution towards maximal fitness.

Prepare a short (5 minutes) presentation of your group work.

*Alternatively: law of logics; mathematics; etc
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