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Abstract

Steady-state metabolite concentrations in a microorganism typically span several orders of magnitude. The
underlying principles governing these concentrations remain poorly understood. Here, we hypothesize that observed
variation can be explained in terms of a compromise between factors that favor minimizing metabolite pool sizes (e.g.
limited solvent capacity) and the need to effectively utilize existing enzymes. The latter requires adequate
thermodynamic driving force in metabolic reactions so that forward flux substantially exceeds reverse flux. To test
this hypothesis, we developed a method, metabolic tug-of-war (mTOW), which computes steady-state metabolite
concentrations in microorganisms on a genome-scale. mTOW is shown to explain up to 55% of the observed
variation in measured metabolite concentrations in E. coli and C. acetobutylicum across various growth media. Our
approach, based strictly on first thermodynamic principles, is the first method that successfully predicts high-
throughput metabolite concentration data in bacteria across conditions.

Citation: Tepper N, Noor E, Amador-Noguez D, Haraldsdóttir HS, Milo R, et al. (2013) Steady-State Metabolite Concentrations Reflect a Balance between
Maximizing Enzyme Efficiency and Minimizing Total Metabolite Load. PLoS ONE 8(9): e75370. doi:10.1371/journal.pone.0075370

Editor: Mukund Thattai, Tata Institute of Fundamental Research, India

Received June 7, 2013; Accepted August 13, 2013; Published September 26, 2013

Copyright: © 2013 Tepper et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: TS was supported by a grant from the Israel Ministry of Science. The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

* E-mail: tomersh@cs.technion.ac.il

☯ These authors contributed equally to this work.

Introduction

Cellular metabolism involves the joint activity of hundreds of
enzyme-catalyzed biochemical reaction A system-wide
understanding of cellular metabolism requires the quantification
of both fluxes through these reactions and the concentrations
of the corresponding metabolites. In recent years, mass
spectrometry has become a popular tool for high-throughput
measurements of metabolite concentrations. In combination
with isotope tracing, mass spectrometry can also measure
metabolic fluxes [1-3]. The application of this approach and
others has revealed that both metabolite concentrations and
fluxes span several orders of magnitude and significantly vary
across microorganisms and growth conditions [4-6].

For steady-state systems, substantial insight into metabolic
reaction rates can be achieved through constraints imposed by
the law of mass balance under a steady-state assumption: for
each internal metabolite, total influx must equal total efflux.
Systems level application of this constraint, typically referred to

as Flux Balance Analysis (FBA) [7], requires knowledge only of
metabolic network stoichiometry, without requiring data on
enzyme kinetic constants. Nevertheless, it has shown
substantial predictive power for both fluxes and other
phenotypes [2,8,9]. Accordingly, FBA has become a widely
used tool in bioengineering [10-13].

In contrast to the success of FBA in predicting fluxes, there is
no comparable tool for explaining and predicting metabolite
concentrations in cell-wide setups. Explicitly modeling
metabolite concentrations would require a systematic
understanding of in vivo enzyme kinetics, which is currently
lacking, despite ongoing progress on modeling metabolic
systems using simplified rate equations and parameter
estimation techniques [14-18].

An alternative approach involves extending FBA to genome-
scale modeling of metabolite concentrations by accounting for
thermodynamic considerations [19-24] (without modeling
enzyme kinetic effects). These methods capitalized on the fact
that the net flux direction depends on the thermodynamic
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driving force, −ΔG', which is calculated according to the
equation:

ΔG'=ΔG'0+RTlnQ (1)

Where Q is the ratio of the chemical activities of products
and reactants within the compartment where the reaction is
occurring, R is the gas constant, T is the temperature, and ΔG'0
is the standard reaction Gibbs energy (determined by the
change in Gibbs energy of formation between products and
substrates at standard concentrations). Throughout this work
we assume the cytoplasm is a dilute aqueous solution (and
therefore the metabolite chemical activities are equal to their
absolute concentrations [25]). Extended FBA methods
implementing thermodynamic constraints on reaction
directionality were shown to improve flux predictions [19,20].
However, incorporating the second law of thermodynamics per-
se into FBA (i.e. constraining ΔG'<0 for flux-carrying reactions)
is insufficient for effectively predicting metabolite
concentrations, as for most metabolites, a wide range of
possible concentrations satisfies all network thermodynamic
constraints [19].

Schuster and Heinrich [26] suggested the principle of
minimization of intermediate concentrations to identify
biologically plausible metabolite concentrations within the
space of thermodynamically feasible solutions (see also 27).
The maintenance of low metabolite concentrations is due to
limitations on intracellular solvent capacity, osmotic pressure,
and to facilitate rapid temporal responses to parameter
changes [28]. It further serves to reduce cross-talk between
metabolic pathways that may arise at high metabolite
concentrations due to promiscuous activity of enzymes (i.e.,
enzymes acting non-specifically on substrates other than their
natural ones) [29,30]. Indeed, recent studies have shown that
the total intracellular levels of metabolites is limited to around
10 gr/L and 300 mM which amounts to 3% of the total cellular
dry weight in E. coli [4,31,32] (see Supp. Material). Taking this
optimality consideration into account, Schuster and Heinrich
have analyzed the metabolite concentrations in key metabolic
pathways in human erythrocytes, showing that their prediction
corresponds qualitatively to experimental data [26].

Here, we suggest that steady-state metabolite
concentrations reflect a compromise between limiting the total
concentration of intermediate metabolites (“metabolite load”; as
previously suggested by Schuster and Heinrich) and
maintaining sufficient thermodynamic driving force such that
enzymes are utilized efficiently, with most flux in the forward
direction. By maintaining adequate forward driving force for all
reactions, the enzyme concentrations required to support the
necessary net metabolic flux is reduced. Thus, steady-state
metabolite concentrations reflect a balance between minimizing
metabolite levels and maximizing enzyme efficiency (Figure 1).
Minimizing enzyme levels is important, due to space
restrictions in the cell and the costs of protein production and
maintenance [33].

We formalize the trade-off between metabolite and enzyme
levels in a computational framework, which we term metabolic
Tug-of-War (mTOW), in analogy to the concept of genetic tug-
of-war for balancing other evolutionary constraints [34]. To

facilitate mTOW’s genome-scale thermodynamic analysis, we
implement a novel approach, Component Contribution Method
(CCM) [35], for estimating reaction Gibbs energies. mTOW is
applied to genome-scale metabolic network reconstructions of
E. coli [36] and of C. acetobutylicum [37], and is shown to
successfully explain measured metabolite concentrations in
both species under various growth conditions [4,6].

Results

Computational estimation of metabolite concentrations
via metabolic Tug-of-War (mTOW)

To identify the most likely metabolite concentrations for a
given metabolic system, we present a novel computational
approach, metabolic tug-of-war (mTOW), that searches for
fluxes and metabolite concentrations, that (i) obey the second
law of thermodynamics, (ii) whose total metabolite
concentration (sum of all species) is limited, and (iii) whose
enzyme levels are small, by ensuring that all active reactions
are thermodynamically favorable with a reasonable driving
force. The input data required for this method are the
stoichiometry of the reactions in a given metabolic network
(readily available for numerous microbes [38-43]) and reaction
Gibbs energies.

The group contribution method (GCM) for estimating reaction
Gibbs energies is a practical method for providing genome-
wide coverage of metabolic reactions. The assumption that
chemical groups are independent enables a state-of-the-art
GCM approach to estimate the ΔG'0 of a major fraction of the
reactions in a typical cell [44-46], but with a relatively high
RMSE (root mean squared error) of 5.2 kJ/mol (according to a
collection of 128 reactions from iAF1260 that have measured
ΔG'0 data [47]). Here, we employ a novel method, Component
Contribution Method (CCM) [35], which aims to improve GCM’s
accuracy while keeping the same genome-wide scope. It is
based on the fact that the standard Gibbs energy of 128
reactions in E. coli’s metabolism (including most reactions in
glycolysis, pentose phosphate pathway, TCA cycle, etc.) have
been directly measured and hence there is no need to
reevaluate their energy based on group decomposition. CCM’s
estimation of reactions Gibbs energy in E. coli shows a marked
improvement in accuracy over GCM, with a RMSE of 2.9
kJ/mol (see further description of CCM and a comparison with
GCM in the Methods and Supp. Material).

Absolute enzyme levels cannot be computed explicitly
without extensive kinetic knowledge, including in vivo kcat

values, which are rarely available. However, there is a
fundamental relationship between reaction thermodynamic
driving force and the enzyme level required to maintain a given
amount of net flux. For reactions far from equilibrium, changes
to thermodynamic driving force have a negligible effect on the
net flux. In contrast, for reactions close to equilibrium, the
required enzyme level increases dramatically as the driving
force approaches zero (i.e., where forward and reverse fluxes
greatly exceed net flux) [48]. Equation 2 approximates the
minimally enzyme level (E) required for maintaining a given net
reaction rate (v) and the associated thermodynamic driving
force (−ΔG'):
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E= v

w+ 1−e
ΔG'
RT

(2)

The derivation of this formula is based on a decomposition of
the reversible Michaelis-Menten rate laws into three terms
representing (as in [48]) (i) enzyme levels, E, in units of
[gr(enzyme)/gr(cell dry weight)], (ii) kinetic effect of substrate
and product concentrations, denoted here by w+ (which is
assumed to have a physiological bound to overcome lack of
kinetic knowledge on enzyme kcat and km values; see Supp.
Material) and (iii) the effect of the thermodynamic driving force.
Note that enzyme level rises and eventually becomes infinite

as the thermodynamic driving force approaches zero (Figure
S2 in File S1).

The complete formulation of mTOW involves a non-convex
optimization, searching for a flux distribution and metabolite
concentrations [19,49], minimizing both metabolite and enzyme
levels (Methods). Since large-scale non-convex optimizations
are computationally intractable, we obtain an approximated
solution via a two-step optimization approach (Figure S3 in File
S1): (i) solving a Mixed-Integer Linear Programming (MILP)
problem to identify a thermodynamically feasible flux
distribution under a growth medium at hand. To account for
potential errors in the estimated Gibbs energy data obtained by
CCM, mTOW minimizes the total sum of corrections to
thermodynamic constants required to obtain a
thermodynamically feasible flux distribution in this step. The
model was further constrained by measured flux and growth

Figure 1.  Steady-state metabolite concentrations reflect a balance between minimizing metabolite levels versus
maximizing enzyme efficiency.  (a) The second law of thermodynamics alone is insufficient to uniquely determine metabolite
concentrations, resulting in a space of possible metabolite levels. Two factors “pull” metabolite levels within this space in different
directions: (I) a limitation of the solvent capacity and osmotic pressure that tends to drive metabolite concentrations down; (II) the
cost associated with the production of enzymes that drives up ratios of reactant-to-product concentrations, and thereby total
metabolite concentrations. (b) A toy example of a linear pathway. The chemical potential of each metabolite in the pathway depends
on its concentration and intrinsic energy of formation. A drop in metabolite chemical potential at every step is a thermodynamic
requirement for the pathway to carry flux. Considering only the objective of maximizing enzyme efficiency (i.e., forward flux per
enzyme), it is desirable to achieve a large drop in chemical potential at each step, but this requires unrealistically high total
metabolite concentrations (red line). On the other hand, solutions that minimize total metabolite concentrations result in small drops
in chemical potential (with many reactions close to equilibrium), leading to inefficient enzyme utilization (most capacity lost to
backwards flux) (green line). This in turn requires unrealistically high enzyme levels to produce the required metabolic flux. mTOW
balances both factors (blue line.).
doi: 10.1371/journal.pone.0075370.g001
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rates on aerobic glucose-fed E. coli [5], and for C.
acetobutylicum [6] (Supp. Material) (ii). This step involves
solving a Quadratic Programming (QP) problem to compute
optimal metabolite concentrations that satisfy the second law of
thermodynamics, with minimal metabolite and enzyme levels
(given the flux rates derived from the first step).
Thermodynamic feasibility is enforced by requiring that ΔG for
all forward reactions is negative (i.e. a positive thermodynamic
force) [50]. To formulate this constraint as a linear equation, the
optimization variables were defined as the log of metabolite
concentrations (as done in [50]). Hence, the total sum of
metabolite concentrations is approximated via a quadratic
function, based on the sum of squared log-scale concentrations
normalized by the minimal allowed concentration (Methods).
Enzyme levels were also expressed via a quadratic function,
based on the flux rate (v) and thermodynamic driving force of
−ΔG' approximating Equation 2 (Methods). The tradeoff
between the two optimization criteria is explored based on the
concept of Pareto optimality (Methods). We show that the
prediction performance of mTOW is robust to alternative
possible flux distributions predicted in step (i) (Supp. Material).

Analyzing metabolite concentrations in both E. coli and C.
acetobutylicum, we assume that metabolite concentrations are
bounded between 10 nM (a concentration reflecting at least a
single molecule per cell in these bacteria) and 100 mM (which
is higher than the maximal measured concentration of any
metabolite in these bacteria [4]). In both the E. coli and C.
acetobutylicum models, extracellular metabolite concentrations
were used to further constrain the solution space based on the
specific growth media. A limited set of intracellular currency
metabolites (ATP, ADP, AMP, NADH, NAD+ and Pi), were
further constrained based on experimental measurements in
each growth medium (see Supp. Material).

Metabolite concentrations in E. coli across different
carbon sources

We applied mTOW to predict metabolite concentrations in E.
coli grown on glucose, acetate and glycerol media, for which
high-throughput measurements are available for validation [4].
Using the genome-scale metabolic network model of E. coli by
Feist et al. [36], we explored the tradeoff between the two
optimality criteria. To this end, we employed the concept of
Pareto optimality, which is useful in metabolic modeling when
multiple optimization criteria are at hand [2]. Specifically,
mTOW was applied to characterize a Pareto front, consisting of
efficient solutions (i.e. metabolite concentration vectors) that
cannot be improved with respect to one optimality criterion
without damaging the other (Figure 2a). As shown, a clear
trade-off between the two objectives exists for E. coli grown on
acetate or glycerol, while a solution that is close to optimal in
both objectives is achievable in glucose media. To choose a
single biologically plausible mTOW solution per media (for
validation against experimental data), we chose solutions
achieving high values for both objectives (by considering the
sum of the objective values, each normalized to its maximal
attainable value). Using this strategy, mTOW predicts the
concentration of 507, 412 and 412 metabolites in glucose,

acetate and glycerol media, respectively (with the complete set
of predictions provided in File S2).

These predicted concentrations corresponded well to the
measurements of Bennett et al [4] (Table 1): Pearson
correlation of log measured metabolite concentrations vs. log
predicted concentrations in three carbon sources was, for
glucose, R = 0.58 (p = 10-8; N = 57 metabolites); for glycerol, R
= 0.57 (p = 0.002; N = 32 metabolites); and, for acetate, R =
0.54 (p = 0.004; N = 34 metabolites). Similar significant
correlations were achieved when utilizing a Spearman
correlation test (Table S2 in File S1). Notably, the overall
prediction performance of mTOW remains highly robust to
other choices of Pareto-optimal solutions. Specifically,
examining the set of Pareto optimal solutions (per media) in
which each of the objectives deviates in up to 20% from the
chosen solution results in an average drop of only 5% in
Pearson correlation with the measured metabolite
concentrations (Table S3 in File S1). As a comparison, we
checked whether metabolite concentrations could also be
correctly predicted based on either the minimization of total
metabolite level or maximization of enzyme efficiency alone.
We found that utilizing only one of the criteria significantly
compromises the predictions in all three growth conditions
(Figure 2b). Overall, this result demonstrates the importance of
jointly considering the dual physiological requirements when
attempting to predict metabolite concentrations. In addition,
when applying thermodynamics-based flux analysis (TMFA; a
previous method that adds thermodynamic constraints to
standard flux balance analysis) [19] to predict these measured
concentrations, the correlations were found to be insignificant
across all three growth media.

As a further analysis, we applied a recently described
method to predict metabolite concentrations based on chemical
properties [29]. Specifically, metabolic concentrations were
previously shown to positively correlate with metabolites’ non-
polar surface area, and negatively correlate with number of
charged atoms. We found that the correlation between the
measured concentrations and predicted ones based on these
chemical properties (using a simple linear regression model
[29]) is comparable to that obtained by mTOW only under
glucose media, but is markedly lower for glycerol and acetate
media (and Table S2 in File S1). Next, we applied a Pearson
partial correlation test to evaluate the correlation between
mTOW’s predicted concentrations and the measured ones,
while controlling for the variation in the measured
concentrations that can also be explained by the chemical
properties. We found a significant Pearson partial correlation
under all three media, showing that the two prediction methods
are complementary and explain different parts of the observed
variation in metabolite concentrations (Table 1 and Table S1 in
File S1). Finally, we integrated the predictions of both
approaches using a linear regression model and obtained a
marked improvement in overall prediction accuracy across in
glucose and glycerol media, reaching Pearson correlations of
0.74, 0.6, and 0.58 for glucose, acetate and glycerol media,
respectively (Table 1; Figure 3; Table S2 in File S1). To further
quantify the difference between mTOW’s predictions and the
measured dataset, we calculated a RMSE (root mean squared
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error) score. We find that mTOW’s predictions achieve a RMSE
score of 0.8 orders of magnitude, which is comparable to the
reported average experimental error of 0.5 orders of magnitude
[4-6] (Table S4 in File S1).

To gain further insight into mTOW’s metabolic concentration
prediction, we analyzed in detail the predicted concentrations
of glycolytic intermediate compounds, both in glucose and in
acetate media, under aerobic conditions. During aerobic growth
on glucose, glycolysis carries a high flux in the catabolic

Figure 2.  The contribution of the two optimization factors, minimization of metabolite load and maximization of enzyme
efficiency, to the successful prediction of metabolite concentrations.  (a) Pareto-optimal solutions predicted by mTOW for E.
coli grown under glucose, acetate and glycerol media. Axes values are normalized to minimal values, where 1 represents the
minimum, and the rest of the values represent the deviations (in fold change) from those minimal values. (b) The correlation
between mTOW’s predicted and measured metabolite concentrations when considering either one of the optimization factors or
both of them together.
doi: 10.1371/journal.pone.0075370.g002

Table 1. Prediction performance for absolute metabolite concentrations in E. coli and C. acetobutylicum under various
growth conditions achieved based on: (I) chemical properties [29], (II) mTOW, (III) mTOW when controlling for the variation
in measured concentrations that is explained by the chemical properties fit (via Pearson partial correlation [58]), and (IV) via
a regression model that combines both methods.

 E. coli C. acetobutylicum

Pearson correlations (R) for log [predicted
concentration] vs. log [measured concentration] Aerobic Glucose  Aerobic Acetate  Aerobic Glycerol  Anaerobic glucose  Acido-genesis  Solvento-genesis
Chemical properties [29] 0.57 0.41 0.47 0.14 0.16 0.12
 (p<10-9) (p<10-2) (p<10-3) non-significant non-significant non-significant

mTOW 0.59 0.61 0.55 0.64 0.46 0.45
 (p<10-5) (p<10-4) (p<10-4) (p<10-4) (p<10-4) (p<10-3)

mTOW, controlling for chemical properties 0.48 0.57 0.51 - - -
 (p<10-3) (p<10-2) (p<10-2)    

Integrating mTOW and chemical properties
prediction

0.74 0.6 0.58 - - -

 (p<10-10) (p<10-3) (p<10-3)    

Chemical properties were unable to correctly predict metabolite concentrations in E. coli under anaerobic media and in C. acetobutylicum.
doi: 10.1371/journal.pone.0075370.t001
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direction (from glucose to pyruvate), with the dual function of
producing energy (ATP and NADH) and biomass precursors
(e.g. amino acids; Figure 4a) [51]. To facilitate this high flux,
the metabolite concentrations should overcome a distributed
thermodynamic bottleneck (as defined in [52]; and in Supp.
Material) consisting of three consecutive reactions with
relatively high adjusted Gibbs energy (21 kJ/mol; when
considering the measured concentrations of co-factors and the
rest of the metabolites having a standard concentration of
1mM; Supp. Material): fructose-bisphosphate aldolase, triose-
phosphate isomerase and glyceraldehyde-3-phosphate
dehydrogenase. In this case, mTOW predicts a gradient of
decreasing concentrations (as in the example on Figure 1b)
from the initial substrate fructose-1,6P and up to
glycerate-1,3P, in agreement with experimental measurements
(Figure 4a). The predicted concentration drop per each of
these reactions provides high enough thermodynamic driving
force (>3 kJ/mol per reaction). The transition of E. coli from

glucose as a carbon source to acetate requires the reversal of
glycolytic flux and the activation of gluconeogenesis [2,53]. The
overall flux rate through gluconeogenesis is significantly lower
than that of glycolysis since it is used only for biomass and not
energy production [31]. These flux changes in acetate media
eliminate the mentioned thermodynamic bottleneck (with all
three reactions operating in their thermodynamically favorable
direction). This leads to a prediction of a markedly lower
concentration of fructose-1,6P and dihydroxyacetone-P in
acetate versus glucose media, in agreement with experimental
measurements (Figure 4b) [31].

Metabolite concentrations in aerobic and anaerobic
conditions for E. coli

We have demonstrated above that mTOW predicts
metabolite concentrations in E. coli under various aerobic
growth conditions. Next, we investigated its performance in
predicting absolute concentrations under anaerobic growth

Figure 3.  Measured metabolite concentration for aerobic glucose-fed E. coli versus predictions made by integrating
mTOW with chemical properties-based concentration prediction.  
doi: 10.1371/journal.pone.0075370.g003

Metabolic Tug-of-War

PLOS ONE | www.plosone.org 6 September 2013 | Volume 8 | Issue 9 | e75370



Figure 4.  mTOW predictions of metabolite concentrations in glycolysis and pentose phosphate pathway are in accordance
with experimental data.  Reactions with high adjusted Gibbs energies (above 5.7 kJ/mol) are marked in red, and measured
metabolites are marked with an asterisk. (a) On glucose media mTOW predicts a gradual decrease in metabolite concentrations
across a distributed thermodynamic bottleneck from FBP to BPG (as supported by the measurements of FBP and DHAP) in both
aerobic and anaerobic conditions. In aerobic acetate medium, the reversal of the glycolytic flux direction eliminates the
thermodynamic bottleneck and leads to the prediction of markedly lower concentrations for FBP and DHAP in accordance with
experimental data. (b) mTOW correctly predicts a marked decrease in concentration of 6PG in glucose media under anaerobic
versus aerobic glucose conditions, due to thermodynamic considerations involving the decrease in flux through phosphogluconate
dehydrogenase (that metabolite 6PG to Ru5P) in anaerobic conditions. Metabolite abbreviations presented in the figure: FBP-D-
fructose 1,6-bisphosphate, DHAP - dihydroxyacetone phosphate, GAP-D-glyceraldehyde 3-phosphate, BPG-D-glycerate 1,3-
bisphosphate, PPP - Pentose Phosphate Pathway, G6P - D-glucose 6-phosphate, X5P - D-xylulose 5-phosphate, 6PG - D-
gluconate 6-phosphate, Ru5P - D-ribulose 5-phosphate, R5P - D-ribose 5-phosphate.
doi: 10.1371/journal.pone.0075370.g004
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conditions. To obtain data on absolute concentrations of
metabolites in E. coli under anaerobic conditions, we applied
an established LC/MS based metabolomics approach as
described in the methods section [4]. This experiment
quantified the absolute concentrations of 56 metabolites (see
measurements in Supp. Material). These were compared to
mTOW’s predictions for the same metabolites in anaerobic
glucose minimal media. The measured and predicted
concentrations correlated well (Pearson R = 0.64; p = 10-4;
Table 1). Comparing also the changes in concentration
between aerobic and anaerobic conditions resulted in a
significant Pearson correlation of 0.44 (p-value = 0.02).

The metabolite showing the largest change in measured
concentration between aerobic and anaerobic conditions is
gluconate-6P, whose anaerobic concentration is 6-fold lower.
mTOW correctly predicts that gluconate-6P has the largest
drop in concentration under an anaerobic medium due to
thermodynamic considerations involving the change of flux
through the oxidative and the non-oxidative branches of the
pentose phosphate (PP) pathway (Figure 4b). Specifically, in
aerobic conditions, ribose-5P is produced predominantly via
the oxidative PP pathway, which ends in the decarboxylation of
gluconate-6P to ribulose-5P (catalyzed by phosphogluconate
dehydrogenase). This reaction has an adjusted Gibbs energy
of 8 kJ/mol, and thus requires a high gluconate-6P
concentration to maintain a reasonable thermodynamic driving
force. In anaerobic conditions, mTOW predicts a drop in flux
through the oxidative branch of the PP pathway (involving
lower flux through phosphogluconate dehydrogenase), which is
compensated by an increased flux through the non-oxidative
branch of PP to synthesize ribose-5P. To validate mTOW’s
prediction, we measured the ratio of ribose-5P synthesized via
the oxidative versus non-oxidative branches of the PP pathway
(by measuring the steady-state labeling of ribose-5P when
feeding E. coli with 1,2-13C-glucose in aerobic and anaerobic
media; Methods). Our measurements confirm mTOW’s
prediction, showing a marked decrease of ~33% in flux through
the oxidative branch of PP pathway in anaerobic conditions
(Figure S6 in File S1).

Observing glycolysis, the predicted metabolite
concentrations are mainly affected by the higher glycolytic flux
[2,53] and the lower oxidative state (NAD/NADH ratio) under
anaerobic vs. aerobic growth. This contributes to an even
larger predicted concentration gradient across metabolites
under anaerobic conditions with a decrease of two orders of
magnitude in the concentration of the downstream metabolite
in this system, glycerate-1,3P.

Analyzing metabolite concentrations in C.
acetobutylicum during acidogenesis and
solventogenesis growth phases

To evaluate mTOW’s ability to predict metabolite
concentrations in another microorganism whose overall
metabolism is less well characterized than that of E. coli, we
examined the biofuel producer C. acetobutylicum. We analyzed
metabolite concentrations in this organism during its acidogenic
growth phase (characterized by exponential growth and high
rates of acid secretion) and its solventogenic growth phase

(stationary phase with high secretion rates of solvents such as
acetone and butanol), using a metabolic network model by Lee
et al [37].

Applying mTOW to predict metabolite concentrations under
both growth phases resulted in the prediction of 206 and 217
concentrations for acidogenesis and solventogenesis,
respectively. Comparing the predicted concentrations with 40
measured concentrations collected by Amador-Noguez et al
[6], mTOW obtains (on a log scale) a significant Pearson
correlation of R = 0.46 (p = 8·10-4) and R = 0.45 (p = 10-3) for
acidogenesis and solventogenesis, respectively (Table 1; File
S1). Close inspection of specific metabolites revealed that in
both phases, fructose 1,6P and aspartate were predicted to
have the highest allowed concentration, in agreement with their
high measured concentrations (above 1mM). In addition,
glutamine had high predicted and measured concentrations in
acidogenesis, and glycerate-3P in solventogenesis, whereas
both citrate and malonyl-CoA were predicted to have low
concentrations (< 10-3 mM) in both conditions.

Discussion

We demonstrated that under some growth media metabolite
concentrations reflect a compromise between cellular
adaptations towards minimizing the total metabolite vs. enzyme
levels. Since metabolite and enzyme levels cannot be explicitly
computed based on metabolic fluxes without extensive kinetic
knowledge, we approximated enzyme levels for reactions
based on their thermodynamic forces, as low thermodynamic
forces result in substantial backward fluxes, and thus higher
required enzyme levels. mTOW does not take into account how
enzyme kinetic considerations influence metabolite
concentrations, for example by changing an enzyme rate via
increasing both its substrate and product concentrations
proportionally (i.e. without changing its thermodynamic driving
force). Furthermore, it does not account for allosteric regulation
or for the effect of specific enzyme kinetic parameters on the
enzyme levels required to catalyze a unit of flux. mTOW’s
predictions also implicitly assume that enzymes are fully
saturated, an assumption which is partially supported by
experimental evidence [4]. While mTOW’s estimated enzyme
levels should be regarded as a very crude approximation, we
evaluate the plausibility of enzyme predicted concentrations
under glucose medium with the proteomic data of Taniguchi et
al [54] and Ishii et al [5]. We find a statistically significant
correlation of 0.32 (p = 10-6 for 210 enzymes) between the
predicted and measured enzyme levels using the recent
proteomics data of Taniguchi et al, and a correlation of 0.44 (p
= 0.02 for 26 enzymes) using the data of Ishii et al. (File S1).

To enable the prediction of metabolite concentrations via a
genome-scale flux and thermodynamic analysis, mTOW is
bound to make additional simplifying assumptions that may
bias its predictions: First, it relies on estimated Gibbs energies
for reactions via the CCM method rather than solely on
experimental data which is lacking for most of the reactions in
E. coli. Second, although the coverage of group contribution-
based methods for estimating thermodynamic parameters
(such as CCM) is much higher than what can be derived from
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experimental data, it is still not complete and covers an
average of 90% of the active (i.e. flux carrying) reactions
across the various growth media (and 75% of the entire
reactions set in E. coli). Third, the exact intracellular conditions
(which include ionic strength, pH, and pMg) affect the
energetics of reactions [55], and current thermodynamic
models are lacking in their ability to model these changes
precisely. Though CCM corrects for pH and ionic strength,
accurate prediction of such changes across media and their
effect on metabolism remains an open challenge. Fourth,
current metabolic models do not encompass all relevant known
reactions. Specifically, while the model accounts for the
required biosynthetic rate of many essential biomass
precursors, it does not include information on the
thermodynamic requirements of the reactions that consume
them as these are outside the scope of the model. For
example, the employed E. coli model lacks information on the
thermodynamics of aminoacyl tRNA synthetase that utilizes
amino-acids, which is likely to limit mTOW’s ability to correctly
predict amino-acid concentrations (and potentially that of their
upstream intermediates; see Supp. Material). Fifth, as mTOW
is formulated as a non-convex optimization problem, whose
exact solution is computationally intractable for large-scale
networks, we obtain only approximated solutions based on a
combination of mixed-integer linear programing and quadratic
programming optimizations (see Supp. Material).

Identifying optimization criteria that would explain complex
metabolic behaviors remains a major open challenge in
systems biology [56]. The fact that mTOW successfully predicts
metabolite concentrations based on a compromise between
two objectives and without requiring a detailed kinetic model
should provide further support for this line of research.

Methods

Estimating reaction Gibbs Energies via Component
Contribution Method (CCM)

Given a set of metabolic reactions, CCM assigns them to the
following categories:

i. Reactions that can be completely determined using a linear
combination of measured reactions (from the TECRDB [47]).

ii. Reactions for which group contributions must be used for
all reactants in order to estimate the ΔG'0 (same as in standard
GCM).

iii. Reactions that can be decomposed to two half-reactions,
one which is in category I and the other in category II (e.g. the
reaction in Figure 5a).

The assignment of reactions to these categories is optimal in
terms of preferring assignments to the first and then third
categories (in accordance with the expected higher accuracy of
the Gibbs energy estimations in the first category). The
resulting set of Gibbs energy estimations for the reactions in all
three categories combined is guaranteed to be consistent with
the first law of thermodynamics (which in this case means that
all reaction Gibbs energies can be described in terms of
changes in the metabolites’ Gibbs energy of formation).

Comparing the distribution of errors in the Gibbs energy
estimations made by CCM to that obtained by standard GCM
(for 128 reactions with measured data in E. coli), shows a
marked advantage to CCM (Methods; Figure S1 in File S1; File
S3). Specifically, in CCM, about 70% of these reactions have
an error smaller than RT (2.5 kJ/mol) compared to only 30% for
GCM (Figure 5b). The deviations in CCM are attributed to two
factors: (i) measurement errors that cause the set of reaction
Gibbs energies to be inconsistent (i.e. violate the first law of
thermodynamics), (ii) errors in the process of normalizing the
effect pseudoisomers (either due to errors in the pH and ionic
strength annotations or in the pKa values used for each
compound) [46]. Notably, these errors affect the standard GCM
methods as well, and are added on top of the inherent error
caused by the underlying assumption that group contributions
are independent of each other.

Importantly, although these 128 measured reactions
comprise less than 10% of the reactions in the iAF1260 model,
they cover approximately 70% of the total absolute flux in
mTOW’s solutions (across all media). Moreover, there are
about 400 other reactions that fall in category I, and their CCM
estimations are expected to be more accurate than the GCM-
based ones, since the estimation does not use the simplifying
assumption needed for the group contribution method. To
support this claim, we ran a cross-validation test based on the
leave-one-out method and found that, when using CCM instead
of standard GCM, there is a 42% decrease in the median error
for reactions in category I, and a 20% decrease on average in
all categories.

mTOW’s formulation
mTOW aims to find a flux distribution (v) and metabolite

levels (c) with low enzyme cost and metabolite load and can be
formulated as:

min  ∑
i=1..m

M ci +δ ⋅ ∑
j∈RG

E c,v j

s.t .
S ⋅v=0 1
v≥0 2

ln cL ≤ ln c ≤ ln cU 3

−
ΔG' j0

RT −S' j ⋅ ln c ≥β v
j
>0∧ j∈R

G
4

where Equation 1 represents stoichiometric mass-balance
constraint, with S representing an nxm stoichiometric matrix.
Equation 2 requires all reactions to have a non-negative flux
rate (requiring that the reversible reactions be split into two
irreversible ones prior to solving this optimization problem).
Equation 3 restricts metabolite concentrations to a pre-defined
range (between cL = 10-5 mM and cU = 100 mM). Equation 4
enforces the second law of thermodynamics, with S'j⋅ln(c)
representing the inner product of the jth column in the
stoichiometric matrix with the ln of metabolite concentrations.
For reactions for which standard Gibbs energy data is available
(whose set is denoted by RG), the thermodynamic driving force
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is computed based on the metabolite concentrations, with R
and T denoting the gas constant (kJ/mol*K and temperature
(K), respectively, and ΔG' j0 represents the standard Gibbs
energy for reaction j. Equation 4 can be transformed to a linear
form via the usage of integer variables (as described [12,13];
Supp. Material). β represent a minimal value from which a
reaction can operate (see below). The first term of the
optimization function represents the minimization of total
metabolite concentrations, while the second term represents
the minimization of total enzyme concentrations. Hence,
ideally, M(c), should be equal to c, and E(c,vj) should be equal

to
v j

v+ 1−e

ΔG' j
RT

. For w+ we assumed a characteristic value of w

+=1000 mmol/(gr*h), based on median enzyme kinetic data

from BRENDA [57] (see Supp. Material). δ represent the
weighting between the two optimization criteria, while varying it
between 0 and inf enables to obtain a set of Pareto optimal
solutions.

As described above, we obtained approximated solutions to
this non-convex optimization by solving a MILP problem to first
find a feasible flux distribution (v), followed by a QP problem to
identify metabolite concentrations (c) with minimal metabolite
and enzyme concentrations (see details in Supp. Material). In
the QP problem, the total sum of metabolite concentrations is
approximated by:

M̃ ci = ln
ci

cL

2
(3)

Figure 5.  Using CCM to evaluate a reaction Gibbs energy.  (a) The reaction catalyzed by phosphoribosyl formyl glycinamidine
synthase (I) involves mostly compounds from TECRDB and two others: N2-Formyl-N1-(5-phospho-D-ribosyl) glycinamide (FGAM)
and 2-(Formamido)-N1-(5-phospho-D-ribosyl) acetamidine (FPRAM). In this case, CCM divides the reaction into two parts: one
which can be completely evaluated using directly observed reaction data (II) and another which can only be resolved using group
contributions (III). The five groups that change throughout this reaction are highlighted in red. The final ΔG'0 estimation is simply the
sum of these two half-reactions: -164.0 + 204.9 = 40.9 kJ/mol. The last stage in the algorithm is to apply the Legendre transform
[59] (using pKa data from ChemAxon; see Supp. Material). The result in this case is ΔG'0= -39.8 kJ/mol. The previous GCM
prediction for the same reaction is ΔG'0= -90.8 kJ/mol (as appears in iAF1260). Note that the values appearing in iAF1260 are also
Legendre transformed. (b) The cumulative distribution functions of the absolute errors for CCM and versus that of GCM taken from
the iAF1260 model. The error was calculated by comparing the prediction to the median value for that reaction taken from TECRDB.
Only reactions that appear in all three datasets are shown (113 in total). The intersections with the dashed lines indicate the fraction
of reactions whose predicted value are in the range of ±RT (2.5 kJ/mol) of the value in TECRDB. One can see that for CCM, 70% of
these reactions are in this category, compared to only about 30% in iAF1260.
doi: 10.1371/journal.pone.0075370.g005
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where ci is the predicted concentration for metabolite i, and
cL is the minimal concentration value (set to 10 nM).

Similarly, the enzyme level terms, E˜ c,v j , were
approximated based on the catalyzed flux rate (v) and
thermodynamic driving force of−ΔG'j, as follows:

Ẽ c,v j =

∞ −
ΔG' j
RT <β

v j ⋅ α+
ΔG' j
RT

2
β<−

ΔG' j
RT <α

0 α<−
ΔG' j
RT

(4)

where α represents the thermodynamic driving force above
which any increase would have a negligible effect on the
enzyme level required to catalyze a unit of flux. Further details
regarding the enzyme approximation, its units, and
computation of these thresholds are given in the Supp.
Material. Here, we describe the results obtained with α=4
(corresponding to a ΔG' of -10 kJ/mol) and β=0.02
(corresponding to a ΔG' of -0.05 kJ/mol) while as discussed in
the Supp. Material, the results are robust for a wide range of
parameter choices (Figures S4-S5 in File S1).

Media and culture conditions and metabolite extraction
Wild-type K-12 strain NCM3722 of E. coli was cultured in

minimal medium containing 4.7g/L KH2PO4, 13.5g/L K2HPO4,
1 g/L K2SO4, 0.1g/L MgSO4·7H2O, 10 mM NH4Cl, and 4g/L
glucose. Experiments used for the determination of intracellular
metabolite concentrations were performed using filter cultures.
Agarose plates for filter cultures were prepared by mixing
agarose with the above media composition to a final
concentration of 1.5% agarose. To prepare filter cultures, a
single colony was picked from a Luria Broth plate, and grown to
saturation overnight in minimal media. The saturated overnight
culture was then diluted to OD650 (optical density at 650 nm)
of 0.03 into liquid minimal medium. This liquid culture was
grown to OD650 of ~ 0.1, and transferred to a filter culture as
follows: for each filter culture, 1.6 mL of liquid culture was
passed through a 47 mm diameter round nylon filter (Millipore)
and the filter placed cell-side up onto a medium-loaded
agarose plate. The filter cultures were allowed to grow to an
OD650 of 0.35 at which point metabolism was quenched and
cells extracted by dropping the filters directly into 1.6 mL of
−20°C 40:40:20 acetonitrile: methanol: water. For the growth of
anaerobic cultures all procedures were carried out inside an
anaerobic chamber (Bactron IV SHEL LAB) with an
atmosphere of 90% nitrogen, 5% hydrogen, and 5% carbon
dioxide.

Steady state labeling experiments using 1,2-13C-glucose
were performed in liquid cultures under aerobic and anaerobic
conditions. To prepare liquid cultures, a single colony was
picked from a Luria Broth plate, and grown to saturation

overnight in minimal media containing 1,2-13C-glucose (4g/L).
The saturated overnight culture was then diluted to OD650 of
0.03 into liquid minimal medium containing 1,2-13C-glucose
(4g/L). This liquid culture was grown to OD650 of ~ 0.3. 5ml of
this liquid culture was passed through a 47 mm diameter round
nylon filter (Millipore) and the filter was dropped immediately
into 1.6 mL of −20°C 40:40:20 acetonitrile: methanol: water.

Metabolite measurements
Cell extracts were analyzed by reversed-phase, ion-pairing

liquid chromatography coupled by electrospray ionization (ESI;
negative mode) to a high-resolution, high-mass-accuracy mass
spectrometer (Exactive; Thermo, Fisher) operated in full scan
mode for the detection of targeted compounds based on their
accurate masses. This analysis was complemented with liquid
chromatography coupled by ESI (positive and negative mode)
to Thermo TSQ Quantum triple quadrupole mass
spectrometers operating in selected reaction monitoring mode.
Measurements from aerobic and anaerobic cell extracts were
performed in parallel during the same day. Concentrations
were determined based on the ratio of metabolite peak heights
from aerobic and anaerobic cultures and using previously
published metabolite concentrations from aerobic E. coli filter
cultures grown under identical conditions [4]. The steady-state
labeling patters of ribose-5-phosphate obtained when cells are
grown in 1,2-13C glucose (100%) were used to calculate the
fraction of ribose-5P produced via the oxidative PP pathway
during aerobic and anaerobic conditions (Figure S6 in File S1).
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