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Abstract

A method will be presented, which does the decomposition of high-
dimensional data into low-dimensional signals which are driven through
an interacting network. Traditional method, like Principle Component
Analysis (PCA) or Independent Component Analysis (ICA), which
perform the same task, do not take network topology information into
account and need to assume biological unjustified statistical properties.
Therefore the resulting decomposition does only represent a phenom-
enological model for the observed data and does not necessarily contain
biologicaly meaningful information. Network Component Analysis is
the method which will show to be a powerful tool in decomposing real
biological data, like DNA microarray, in their regulatory signals over
time points and their connectivity strength between the regulatory
units and the output layer of the underlying network.

1 Introduction

Bacteria respond to a change in environmental condition through a variety
of sensor proteins which eventually relay the signal to DNA binding pro-
teins which will modulate transcription. These DNA binding proteins, or
transcription factors (TFs), can be quantified by analytic methods such as
DNA microarray. These technics supply a high dimensional description of
the cell which is typically the end product of low dimensional regulatory
signals driven trough an interacting network.

In the past couple of years a variety of analytic method have been devel-
oped in order to decompose the regulatory signals, e.g. Principle Compo-
nent Analysis (PCA), Independent Component Analysis (ICA). Even though
these technics have shown to be a vital instrument in order to understand
regulatory processes, they have not been designed to address the hidden dy-
namics reconstruction problem. They discard available information of the
underlying network and they need to assume mutual orthogonally and sta-
tistical independence of regulatory signals.
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Here we will describe a method which relies on the a priori known net-
work topology and does not need to make assumptions on orthogonally
or independents. We will describe the principle of Network Component
Analysis (NCA) in detail and we will also give a brief example of a real life
application of NCA.

Figure 1: A regulatory network in which the output nodes are controlled by
the strength of the input units. (Taken from [2])

2 Network Component Analysis

The bases for the NCA is the data retrieved from the DNA microarray. The
obtained data points are organized in a matrix [E](size N x M) which holds
M samples (or time points) of N output variables (such as the expression
ratio of transcripts). In order to reconstruct the underlying network, [E]
needs to be decomposed into

[E] = [A][P ] (1)

[P ] (size L x M) which consists of L regulatory signals over M time points
(note that usually L is much smaller than M) and [A] (size N x L) which
encodes the connectivity strength between the regulatory units and the out-
put layer (Fig. 1).
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The decomposition shown in Eq. 1 is an inverse problem for which no
unique solution exist without further assumptions. This can be demon-
strated [2] by introducing a non singular matrix [X] (size L x L) such that

[E] = ([A][X])([X−1][P ]) = [Â][P̂ ] (2)

Thus without further constrains, [E] can not be uniquely decomposed ac-
cording to Eq. 1. Therefore we need to introduce criteria that do allow
a unique decomposition while not making assumptions on the statistical
nature of the problem.

3 Criteria for NCA

Considering Eq.2, multiple [A]s and [P ]s can be found that reconstruct [E]
equally well. Nevertheless, by applying certain constrains on the connectiv-
ity of [A], it can be shown that the matrix [X] can only be diagonal (see
Appendis of [2] for proof). Furthermore, when [A] has full-column rank and
[P ] has full row rank, the decomposition can be solved uniquely. In other
words, Eq. 2 represents all possible solutions (see Appendix of [2] for proof).
Under these constrains, Eq. 1 can be satisfactorily solved up to a scaling
factor (represented by the matrix [X] in Eq. 2).

In summary, the constrains necessary to perform NCA are

(i) [A] (connectivity matrix) must have full-column rank. So that all regu-
latory signals are represented.

(ii) All sub-matrices of [A] must have full-column rank. Otherwise the
network topology does not allow a unique identification of regulatory
signals.

(iii) [P ] must have full row rank. Meaning that no regulatory signal can be
expressed as a linear combination of two other signals.

If these criteria are satisfied, the experimentally obtained data matrix [E]
can be decomposed into the connectivity matrix [A] and the signal ma-
trix [P ]. [A] will contain the estimated connectivity strength on each edge,
whereas [P ] will represent the regulatory signals of each node (Fig. 1).

In order to test these three criteria, an initial connectivity matrix [A]
(size N x L) is constructed from the known network topology. An entry aij

is set to zero, if no connection from regulatory unit j to the output node i
exist in the model. All other values are set to a random non zero number.
After construction of the initial matrix [A], the first criteria is tested. If [A]
has full-column rank, submatrixes are generated by removing one regulatory
unit j and all output nodes i0, ..., in that are influenced by j. The second
criteria is satisfied, if and only if, all submatrixes have rank equal to L− 1.
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Remember, L was the number of regulatory signals.
A priori testing of the third criteria is not possible, but the criteria implies,
that L (the number of regulatory nodes) must be smaller than M (the num-
ber of data points). If L < M , the matrix [P ] is very likely to have full row
rank for real biological data. In any case it is required to check matrix [P ]
for full row rank, after NCA is performed.

Fig. 2 gives an easy example of two network, that have an identical num-
ber of regulatory units and output nodes. But because of the connection
pattern of R3, the network in Fig 2a is identifiable, whereas the network
shown in Fig. 2b is not.

Figure 2: An identifiable network (a) and an unidentifiable network (b).
The network differences are shown in red. (Taken from [2])

4 Method for NCA

After the identifiability of the network has been verified, the regulatory
signals [P ] and the connectivity strength [A] can be reconstructed by the
following procedure. First of all the known network topology is modeled in
[A] by setting all entries to zero for which no edge between the regulatory
unit and the output node exists. All other entries are initialized with an
non zero value. Unfortunately when dealing with biological data the signals
are noisy, and an exact solution is not possible. However, the solution can
be approximated, in this case by a least-square error measure.

The following objective function is minimized:

min||[E] − [A][P ]||2, s.t.AεZ0, (3)
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where Z0 is the know network topology.
Note that the minimization is an iterative process, in which the values

of [A] and [P ] are alternately optimized. This procedure always ends in an
global optimum (see [2] for proof).

5 Experimental Validation of NCA

In order to assure the reliability of NCA, a test case was constructed in
which the solution was known. A network of seven hemoglobin solutions
where prepared. Each solution contains a combination of the three compo-
nents: oxyhemoglobin, methemoglobin, and cyano-hemoglobin. For details
of preparation see Appendix of [2]. The absorbance spectra where measured
between 380 and 700nm with 1-nm increments resulting in the matrix [Abs]
of size 7 x 321. According to Beer-Lambert law, the measured absorbance
spectra can be decomposed by

[Abs] = [C][ε] (4)

where the rows of [Abs] are the absorbance spectra of each solution at each
wavelength, the columns of the connectivity matrix [C] are the concentration
of each component, and the rows of [ε] are the spectra of pure components.
The known network topology is shown in Fig. 3a.

From the results in Fig. 3b it is clear that NCA gives the best recon-
struction of the true spectra. Especially for cyano-hemoglobin the results
obtained by PCA or ICA are misleading and might result in a misinterpre-
tation of the data.

6 Conclusions

This article has shown a method for decomposing experimental data into
their connectivity strength and regulatory signals while including known
facts about the underlying network structure. Additionally the NCA does
not make any statistical assumptions of orthogonality or independence like
other methods (e.g. PCA, ICA). Therefore it represents a procedure that
is based on biological relevant assumptions. As shown above, the NCA
represents a powerful tool for reconstructing regulatory network parameters.
For further applications of NCA see [2] or [1].
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Figure 3: Experimental validation of NCA using absorbance spectra of
hemoglobin solutions. (Taken from [2])
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