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Abstract
Regarding transcriptional and metabolic pathways in a cell under the aspect of evolution-

ary development suggests an emergence of design principles, which make biological systems
optimal with respect to certain constraints. Learning more about such principles can lead
to a deeper understanding of the regulatory mechanisms in a cell. This essay is mainly
based on the publication of Zaslaver et al.[1] in which optimal design principles are first
investigated experimentally within the aminoacid biosynthesis (AAB) pathways and then,
in a separate approach, expressed via a mathematical model. The experimental approach
first demonstrates the general ability of AAB pathways to respond to changing conditions
by a dynamic adaptation of the genetic regulatory program. In the second step the
behaviour of separate AAB pathways is observed allowing for higher temporal resolution.
The results reveal a pronounced temporal and quantitative hierarchy in the expres-
sion of enzymes involved in a pathway. The experimental results are finally compared to
an optimization model of an unbranched Michaelis-Menten pathway, where a quite similar
behaviour can be observed.

1 Introduction

Previously several scientific efforts have been made to develop techniques for illuminating op-
timal design principles in a cell. The theoretical approaches are mostly based on developing
mathematical models of interactions between different components of biological networks. Def-
initions of optimal behaviour in such models are commonly realised through setting of goal
functions to be optimized with respect to biologically relevant parameters, possibly subject to
appropriate constraints. The justification for these goal functions arises from the assumption
that the behaviour of biological systems adapts to the multitude of different conditions in a
way, which constantly guarantees performance optmization. Here we will focus on unbranched
metabolic pathways with Michaelis-Menten kinetics as described in Zaslaver et al. [1]. Prior to
presenting their methods and results it is however reasonable to discuss some principles which
shed light on the theoretical foundation of the experimental and modelling findings of this work.

2 Modelling via Metabolic Control Analysis

One modelling access to optimality in metabolic pathways is provided by the viewpoint of the
metabolic control analysis (MCA). This approach is based on a model of quantitative in-
terdependence between different parameters in a metabolic pathway. Heinrich and Klipp [2]
deployed MCA to model an optimal behaviour both in an unbranched linear and a Michaelis-
Menten pathway. Central quantities in this approach are the so called flux controll coeffi-
cients, which are defined as the derivatives of the steady state flux J with respect to enzyme
concentrations Ej times the normalized amount of enzyme j:

CJ
j =

∂J

∂Ej

Ej

J
(1)
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Intuitively the quantity CJ
j decribes the strength of the influence of enzyme j in a pathway on

the steady state flux J . A constraint is the assumption of a limited total enzyme amount,
expressed through the sum of all enzymes Et bounded by the overall enzyme amount E0

t :

n∑
j=1

Ej = Et ≤ E0
t (2)

Using Lagrange multipliers to maximize the steady state flux J with respect to the enzyme
concentrations Ej the authors show that the flux controll coefficients can be expressed as:

CJ
j =

Ej

E0
t

(3)

implying, that maximization of J leads to a distribution of control coefficients which is identic
to the distribution of the enzyme concentrations in an unbranched metabolic pathway.
Applying this model to optimization of linear unbranched pathways leads to the result,
that the distribution of controll coefficients has a decreasing character from the beginning
(the substrate) to the end (final product) of the reaction chain.
To model optimal behaviour in an unbrached Michaelis-Menten pathway the authors [2]
maximize the steady-state flux not only with respect to enzyme concentrations but also with
respect to the kinetic parameters of the reaction chain. The resulting distributions of controll
coeffiicients are shown to be dependent on concentrations of the initial substrate and the end
product. A finding important for our further considerations is, that given a high difference
between standart free energy of the initial substrate and the end product, the control coeffi-
cients are again distributed in a decreasing manner from the initial substrate to the
end product. This implies that enzymes which act close to the beginning of a pathway have a
larger influence on the steady-state flux than the enzymes acting close to the end of a pathway.
Their concentrations also are distributed in a decreasing manner through the reaction chain.

3 Experimental approach

The first approach of Zaslaver et al. [1] to investigte optimality principles in metabolic path-
ways was an experimental observation of expression of genes encoding enzymes involved in
aminoacid biosynthesis (AAB) reaction chains. As the transcriptional regulatory networks of
these pathways are well characterized, it was possible to measure the differential gene expression
at different conditions by measuring activity of the known promoters of appropriate enzymes.
For this purpose a library of 52 reporter strains was constructed by cloning one of the promoter
regions upstream of reporter genes Lux or GFP as shown in fig. 1.
The promoter activity in time was measured by quantifying the resulting fluorescence, lumin-
scence and absorbance in a multiwell fluorimeter which alowed for a temporal resolution between
4 and 8 minutes.

3.1 Large scale promoter analysis of aminoacid pathway genes

In the first part of the experiment the promoter activity of AAB genes was measured after a
shift from a medium with no aminoacids to a medium with one particular aminoacid added.
While in the first medium all promoters were active, after the shift the promoters involved in the
synthesis of the added aminoacid were downregulated (fig. 2). This results in a slight diagonal
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Figure 1: Construction of reporter strains by cloning AAB gene promoters upstream of reporter
genes Lux or GFP (pUA66 and pUAL94 respectively). Both vectors contain BamHI and Xhol
cloning site, a low copy origine and a karamycin resistance gene.

course of downregulation. A very pronounced downregulation for example can be observed for
the activity of promoters involved in the arginine biosynthesis pathway after adding arginine.
Furthermore several promoters from different pathways are also coregulated. For instance ad-
dition of glutamate, a precursor of argingine AAB pathway also resulted in a downregulation
of arginine promoters.
The dynamic adaptivity of the AAB system is obviously an essential feature guaranteeing a sav-
ing of resources when their consumption is not necessary. Similar behaviour can be observed
in the flagella assembly system of E. Coli, which turns on and off depending on the nutrition
conditions of the medium, thus enabling a movement from locations lacking nutrition and a
longer stay in a medium with nutrition abundance. This obviously displays an optimality prin-
ciple of the system which has the ability of dynamic response to changing environmental
conditions.

3.2 Separate analysis of amino acid pathways

In the second part of the experiment the promoter activity in single AAB pathways was ob-
served after removing a single aminoacid. Here a higher temporal resolution of 4 minutes was
possible which enabled a detailed analysis of activation dynamics within the pathways. As a
first object of study the argingine pathway promoters were transferred into a medium contain-
ing all aminoacids except arginine. As a result a temporal and quantitative hierarchal order
in the expression of enzymes involved in the pathway was observed (fig. 3 a). The synthesis
pathway of arginine consists of three unbranched reaction chains. In each of the pathways a
temporal hierarchy in the expression is present, reflecting the order of the enzymes in the path-
way. This can be seen on the shift of the activation in the fluorimeter through the consecutive
steps. For example in the pathway turning glutamate to omithine the order of promoter acti-
vation is: argA, argBC, argD, argE. This is exactly the same order in which the enzymes act
in the pathway. The same observation is made for the other two unbranched pathways of the
arginine biosynthesis (fig. 3 a). Observing the unnormalized expression of the enzymes in the
glutamate-omithine pathway of arginine biosynthesis reveals a further result. As can be seen
in (fig. 3 b) not only the order of expression of the enzymes obeys their appearance order in
the pathway but also the amount of promoter activity decreases from argA to argE. These two
observations have been also made for other AAB pathways like methionine and serine [1].

The described results gain a special relevance when considered in the light of the theoreti-
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Figure 2: Decrease of AAB promoter activity of involved genes when adding the respec-
tive aminoacid to the medium and the decrease of activity of all promoters when adding all
aminoacids. The promoter activity was measured with reporter strains in a defined medium.
The rows represent promoters invloved in a appropriate AAB pathway, and columns represent
respective conditions (addition of the respective aminoacids). The last column indicates adding
of all amino acids. The logarithm of the ratio of the promoter activity to the promoter activ-
ity in the absence of all aminoacids is shown. Blue means downregulation and red indicates
upregulation.

cal conclusions of the metabolic control analysis by Heinrich and Klipp [2]. The decrease of
control coefficients from the beginning to the end of an unbranched pathway is anticipated
for an unbranched linear metabolic pathway and some cases of unbranched Michaelis-Menten
pathways (depending on initial substrate and product concentrations). Klipp et al. [3] fur-
thermore suggested that time dependent gene expression enables cells to adapt the metabolic
capabilities to varying external conditions. Both of these optimality principles were observed
here experimentally within different AAB pathways.
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(a)

(b)

Figure 3: (a) Activation order of promoters involved in the arginine biosynthesis pathway is
shown as a result of a shift of the reporter strains from a medium containing all aminoacids to a
medium lacking arginine. (b) Unnormalized promoter activity profiles for arginine AAB genes
after transfer to a medium lacking argignine.
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4 Mathematical modelling of optimality in a Michaelis-Menten
reaction pathway

The second approach by Zaslaver at al. [1] used a mathematical modelling of an unbranched
reaction chain obeying Michaelis-Menten kinetics:

S0
E1−→ S1

E2−→ S2
E3−→ P (4)

where Si represent the concentrations of metabolites and Ei are the concentrations of enzymes.
The rate of production, utilization and dilution of the metabolites is described by a set of
following ODEs:

dSi

dt
= ViEi

Si−1

Si−1 + Kmi
− Vi+1Ei+1

Si

Si + Kmi+1
− αSi (5)

where Vi are the enzyme velocities, set equally to the same value Vi = V . The rate of concen-
tration change of enzymes is modelled by a set of ODEs as follows:

dEi

dt
= βi

1
1 + R(t)/ki

− αEi (6)

The values α and βi in equations (5) and (6) represent the cell growth rate and the maximal
promoter activity of the gene coding for enzyme i respectively. R(t) is the amount of repressor
bound to the product P . A further ODE, not shown here, describes the change of total repressor
concentration Rt.
An optimal behaviour of this system was modelled by minimizing the following cost function:

C = a
∑

i

∫ T

0
βi

1
1 + R(t)/ki

dt +
∫ T

0

∣∣∣∣dP

dt
− dP

dt goal

∣∣∣∣dt = min (7)

The first summand is a sum of integrals of enzyme concentration rates, where a is a relative cost
of producing enzymes and ki is a concentration of a repressor needed for 50% repression. Mini-
mizing this term constrains the total enzyme amount used. This corresponds to the constraint
of a limited total enzyme amount, which we encountered in Heinrich et al [2] (see Section 2).
Minimizing the second summand, induces as fast as possible product synthesis. This criterion
can be observed as equivalent to the maximization of the total steady state flux also applied in
the cited work.

The modelled system was optimized numerically with respect to the maximal promoter ac-
tivity βi and repression coefficients ki. The full model and the resulting optimal parameters
where reproduced for this essay. For this purpose a system of eight ordinary differential equa-
tions was solved using the Matlab ODE solver ode23. Figure 4 shows the solution functions of
product synthesis-dillution rates. It can be seen, that with increasing cell growth parameters
the decay of the product rate gets higher. The resulting optimal enzyme rates for T = 60 are
depicted in figure 5. The hierarchy of enzyme rates from the first to the third enzyme in the
reaction chain resembles the hierarchical order in the promoter activity of enzymes found in the
aminoacid biosynthesis pathways (Section 3). The resulting parameters βi are distributed in a
decreasing manner from the first to the third enzyme. Zaslaver et al claim that this result can
be observed for a wide span of values of T and enzyme production cost a as shown in figure
6. Generally an increasing integration time T of the cost function leads to a smaller difference
between times needed to achieve 50 % of the maximal concentration.
The matlab code for solving the system of ODEs can be found in the Appendix.
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Figure 4: Substrate rates as a function of time obtained by solving the system of ODEs as
desribed by Zaslaver et al. Different functions of the product concentration rate can be observed
with varying cell growth rates.
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Figure 5: Optimal enzyme rate profiles for an unbranched three-step Michaelis-Menten reaction
chain modelled by equations (5) and (6) and optimized with respect to the cost function (7).
The x-axis reaches from 0 to 2500 ODE solving steps corresponding to a time span of T = 60.

Figure 6: Properties of the optimal solution for various integration times T and enzyme pro-
duction costs a. The solutions in the blue region show a decreasing maximal enzyme rate
max(E1) > max(E2) > max(E3) and increasing response time (time needed to achieve 50 % of
maximal concentration)

.

5 Conclusions and Discussion

An experimental approach and a mathematical model for investigating optimal behaviour in
unbranched metabolic pathways are presented. In the first approach several general design prin-
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ciples can be observed. The first principle is the dynamic adaptivity of a metabolic pathway of
aminoacid biosynthesis enabling a reasonable consumption rate of available recources in the cell
depending on environmental conditions. The mechanism of such optimal adaptation processes
can be elucidated when regarding the separate AAB pathways with higher temporal resolution.
Enzymes acting closer to the beginning of an AAB pathway show a higher maximal promoter
activity and a shorter time needed for reaching this acitvity level. Furthermore the general
principle of just-in-time production can be observed, expressing a sequential activation of
promoters in the order of appearence in the pathway.
The hierarchical expression level distribution was also observed in an optimization model based
on Michaelis-Menten kinetics, suggesting that the mathematical model to a certain level explains
the real AAB metabolic pathway. Nevertheless it should be kept in mind that the presented
system of ODEs is at most a simplification of the real biochemical system, where certain factors
are not taken into account or are simply still unknown. It is intriguing how close the results of
the MCA modelling (Section 1) are to the presented experimental observations and to the opti-
mization results of the ODE model. This approves the combination of the different procedures.
For proving that a system behaves in an optimal way a goal function is needed. Optimizing
it in mathematical terms substitutes the process of biological evolutionary refinement. The
experimental approach in turn helps to verify if a certain behaviour is biologically reasonable.
Commonly in all approaches optimization of goal functions used leads to a maximization of the
steady-state flux or to a minimization of the total enzyme amount used.
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A Appendix

A.1 Matlab code

Solving the ODE system:

[T,Y]=ode23(@mmpathway,[0 20],[20 0 0 0.1 0.1 0.1 0.1 0])

A.1.1 mmpathway.m

%mmpathway.m
%Models an unbranched Michaelis-Menten pathway
function dy = mmpathway(t,y)
V=1;
Km=1;
Kr=0.0001;
alpha=1;
alpha_end=2;
beta0 = 1.3;
beta1=3.4;
beta2=0.67;
beta3=0.1;
k0= 0.23;
k1=0.23;
k2=0.68;
k3=2.1;
dy = zeros(8,1);

%ODEs for metabolites
dy(1) = - V*y(5) * y(1)/(y(1)+Km) - alpha*y(1)
dy(2) = V*y(5) * y(1)/ (y(1)+Km )- V*y(6)* y(2)/(y(2)+Km) - alpha*y(2)
dy(3) = V*y(6) * y(2)/ (y(2)+Km )- V*y(7)*y(3)/(y(3)+Km) - alpha*y(3)
dy(4) = V*y(7) * y(3)/ (y(3)+Km )- alpha_end*y(4)

%ODEs for enzymes
dy(5) = beta1 * 1/(1+Rfunc(y(4), y(8), Kr) / k1)
dy(6) = beta2 * 1/(1+Rfunc(y(4), y(8), Kr) / k2)
dy(7) = beta3 * 1/(1+Rfunc(y(4), y(8), Kr) / k3)

%ODE for total repressor concentration
dy(8) = beta0 * 1/(1+Rfunc(y(4), y(8), Kr)/k0) - alpha*y(8)

A.1.2 Rfunc.m

%Rfunc.m
%Function of active repressor level
function sol = Rfunc(S3,Rt,Kr)
sol = Rt*S3/(Kr + S3)
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