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ABSTRACT Hepatocytes respond with repetitive cytosolic calcium spikes to stimulation by vasopressin and noradrenalin.
In the intact liver, calcium oscillations occur in a synchronized fashion as periodic waves across whole liver lobules, but the
mechanism of intercellular coupling remains unclear. Recently, it has been shown that individual hepatocytes can have very
different intrinsic oscillation frequencies but become phase-locked when coupled by gap junctions. We investigate the gap
junction hypothesis for intercellular synchronization by means of a mathematical model. It is shown that junctional calcium
fluxes are effective in synchronizing calcium oscillations in coupled hepatocytes. An experimentally testable estimate is given
for the junctional coupling coefficient required; it mainly depends on the degree of heterogeneity between cells. Intercellular
synchronization by junctional calcium diffusion may occur also in other cell types exhibiting calcium-activated calcium release
through InsP3 receptors, if the gap junctional coupling is strong enough and the InsP3 receptors are sufficiently sensitized by
InsP3.

INTRODUCTION

Transient release of calcium ions from intracellular stores is
a central response to extracellular signals. These transients
can exhibit a high spatiotemporal organization, often occur-
ring as intracellular calcium oscillations or waves (Thomas
et al., 1996). Recently, it has been observed in a variety of
systems that calcium signals can also propagate from one
cell to another and thereby serve as a means of intercellular
communication. Intercellular spread of calcium waves oc-
curs, for example, in airway epithelium (Sanderson, 1995),
astrocytes (Giaume and Venance, 1998), pancreatic acinar
cells (Yule et al., 1996), and co-cultures of astrocytes and
neurons (Froes and Carvalho, 1998). In the intact liver,
Robb-Gaspers and Thomas (1995) and Nathanson et al.
(1995) found that calcium oscillations evoked by inositol
trisphosphate (InsP3)-linked agonists are organized as coor-
dinated periodic waves across whole liver lobules (some
500 cells). On the smaller scale of isolated hepatocyte
couplets, this coordination manifests itself as near-syn-
chrony of calcium oscillations in adjacent cells (Tjordmann
et al., 1997). A similar intercellular synchronization of
calcium oscillations has also been observed in primary
culture of articular chondrocytes (D’Andrea and Vittur,
1996) and in kidney cells (Rottingen et al., 1997). The
mechanisms of intercellular calcium signaling are currently
being investigated, the two main candidates being commu-
nication across gap junctions and paracrine signaling.

Using a combination of experimental approaches and
mathematical modeling, many aspects of intracellular cal-
cium oscillations and waves have been elucidated. In par-

ticular, it has been shown how the properties of the calcium
release channels of the endoplasmic reticulum (ER), InsP3

receptors (IP3R), and ryanodine receptors (RyR), give rise
to the rhythmic or wavelike discharge of calcium from the
ER that underlies calcium signaling in many cell types (e.g.,
Li et al., 1995; Goldbeter, 1996). In the present paper we
extend the modeling approach to intercellular calcium sig-
naling and, stimulated by experimental data, specifically
aim to elucidate the mechanism of the synchronization of
calcium oscillations in liver tissue.

In hepatocytes, calcium oscillations are elicited by the
hormones vasopressin and noradrenalin (and some other
agonists) that activate phospholipase C (PLC) and in turn
IP3R (Cobbold et al., 1991; Thomas et al., 1991, 1995).
These oscillations take the form of periodic waves in liver
tissue (Nathanson et al., 1995; Robb-Gaspers and Thomas,
1995; Tordjmann et al., 1998), and may coordinate the
activities of a large number of cells (Eugenin et al., 1998).
As in the case of single cells, the oscillation frequency
increases with agonist dose. Hepatocytes can communicate
directly through gap junctions (Sa´ez et al., 1989), and via
paracrine factors (Schlosser et al., 1996). To elucidate the
cellular basis of the intercellular coordination of calcium
oscillations, Tjordmann et al. (1997) investigated connected
hepatocyte pairs and triplets. When hormone was applied
they observed near-synchronous oscillations in the cells of
these couplets under conditions that precluded paracrine
signaling. These results can be summarized as follows: 1)
upon uniform stimulation of the cells with noradrenalin and
with intact gap-junctional coupling, calcium oscillations in
connected hepatocytes are almost synchronous: there is a
1:1 relationship between calcium peaks in all cells, with
possibly small phase shifts between cells (generally,10%
of the common oscillation period). 2) Local stimulation of
one cell causes calcium to oscillate only in this cell, while
adjacent cells remain at rest. 3) Disruption of gap junctions
leads to immediate loss of synchrony. In the continuing

Received for publication 2 February 1999 and in final form 26 May 1999.

Address reprint requests to Dr. Thomas Ho¨fer, Theoretical Biophysics,
Institute of Biology, Humboldt University Berlin, Invalidenstr. 42,
D-10115 Berlin, Germany, Tel.:14930-2093-8592; Fax:14930-2093-
8813; E-mail: thoefer@bp.biologie.hu-berlin.de.

© 1999 by the Biophysical Society

0006-3495/99/09/1244/13 $2.00

1244 Biophysical Journal Volume 77 September 1999 1244–1256



presence of uniformly applied agonist, the oscillation peri-
ods of individual cells can differ significantly (for the ex-
perimental recordings shown by a factor of up to 2.5). 4)
After washout of gap junction blockers, synchrony is re-
stored rapidly, within one or two cycles of the oscillation. 5)
Usually the fastest individual cell (when uncoupled) appears
to dictate the collective frequency (when coupled). These
observations imply that synchronization in hepatocytes re-
lies on gap-junctional communication. At the same time,
they provide a set of specific tests for a mechanistic model.

We begin by investigating the frequency variability of
individual hepatocytes. A relatively simple mathematical
model of hepatocyte calcium dynamics is developed that
satisfactorily accounts for the properties of agonist-evoked
calcium oscillations in an “average” hepatocyte. It is based
on the assumption of a functionally uniform (though not
necessarily fully interconnected) ER calcium storage com-
partment, equipped with IP3R type I. The model is struc-
turally similar to the models by Somogyi and Stucki (1991)
and Dupont and Goldbeter (1993) but, in addition to IP3R
activation by InsP3 and calcium, incorporates the now well-
characterized inhibition of the receptor by calcium (Bez-
prozvanny et al., 1991; DeYoung and Keizer, 1991). The
large frequency variability of individual hepatocytes can be
due to random factors, but might also be regulated. The
latter could be realized by specific differences in agonist
receptor content that may establish gradients of excitability
in the liver (Tordjmann et al., 1998). Because of the result-
ing differences in InsP3 level (for uniform agonist stimula-
tion), these could result in gradients of the intrinsic oscilla-
tion frequencies of cells. However, agonist receptor
gradients occur over longer distances (between perivenous
and periportal cells). The experiments by Tjordmann et al.
(1997) have shown a rather large variability between adja-
cent cells. This is likely to be of random nature, and we
investigate the hypothesis that it originates from random
heterogeneities of structural properties, such as cell size,
shape, or ER content.

Subsequently, we study both the effect of structure-based
frequency variability and of differences in InsP3 level on
intercellular synchronization in the simplest possible model
of a cell pair coupled by gap junctions. For comparison with
some of the experimental results by Tjordmann et al.
(1997), we also investigate a linear cell triplet. Gap junc-
tions in rat hepatocytes are permeable to both calcium and
InsP3 (Sáez et al., 1989). In hepatocytes, the main role of
InsP3 appears to be the sensitization of the IP3R toward
activation by calcium. In particular, there seems to be no
feedback of calcium on PLC in hepatocytes (Bird et al.,
1997), and nonmetabolizable analogs of InsP3 can also elicit
oscillations (Thomas et al., 1991). This argues against an
involvement of InsP3 in the mechanism of oscillations.
Therefore, we assume InsP3 to rapidly attain a steady-state
value determined by PLC activity (dependent on agonist
dose and receptor density), degradation and junctional dif-
fusion, and consequently treat it as a model parameter.
However, calcium oscillations may cause continuously

changing junctional fluxes of calcium. We will thus focus
on the question whether junctional calcium fluxes can me-
diate intercellular synchronization of calcium oscillations,
and under which conditions they can synchronize cells with
very different intrinsic frequencies. In the concluding dis-
cussion, we relate our findings to results and hypotheses
concerning mechanisms of intercellular calcium signaling in
other systems.

THE HEPATOCYTE MODEL

Hormone-evoked calcium dynamics in hepatocytes (as in many other cell
types) involve the interplay of calcium fluxes from and into the ER and
across the plasma membrane, and possibly also other compartments such as
mitochondria. We aim to derive a relatively simple mechanistic description
of hepatocyte calcium dynamics on which analysis of the dynamics of
coupled cells will be based. Denote the calcium release flux from the ER
and reuptake through the sarco/endoplasmic reticulum calcium ATPase
(SERCA) byJrel and JSERCA, respectively, the calcium fluxes across the
plasma membrane byJin and Jout, and the gap-junctional flux byJG.
Calcium entering the cytosol or the ER binds to a host of proteins acting as
calcium buffers. Assuming spatial uniformity of the calcium concentration
in the cytoplasm and the ER, the balance equation for the concentration of
cytoplasmic-free calcium,x, takes the form

dx

dt
5

APM

VC
~Jin 2 Jout! 1

AER

VC
~Jrel 2 JSERCA!

1
AG

VC
JG 2 k1~B0 2 b!x 1 k2b,

(1)

whereAPM, AER, andAG are the total areas of plasma membrane, the ER
membrane, and the gap junctional connections, respectively;VC denotes
the cytoplasmic volume. The last two terms account for calcium buffering
by a single, uniformly distributed type of buffer, with concentrations of
total and occupied calcium binding sitesB0 andb, respectively. A potential
influence of mitochondrial calcium fluxes (Ichas et al., 1997) is neglected.
For simplicity, we assume that buffering is fast compared to the calcium
fluxes. Applying a quasi-steady-state assumption to the rate of change of
bound buffer,db/dt, Eq. 1 is transformed into

dx

dt
5

APM

CC
~Jin 2 Jout!

1
AER

CC
~Jrel 2 JSERCA! 1

AG

CC
JG,

(2)

with the effective cytosolic volume (calcium “capacity”)CC(x) 5 VC(1 1
KBB0/(KB 1 x)2), andKB 5 k2/k1. We consider only the unsaturated case
x ,, KB, so that this expression becomes

CC 5 VCS1 1
B0

KB
D . (3)

Analogous to Eq. 3 we define the effective volume of the ER,CER; in the
ER the dissociation constantKB and total concentration of calcium binding
sitesB0 may take values different from those of the cytoplasm.

Variations in cytosolic calcium concentration will be accompanied by
concentration changes in the ER. Denote byy the free calcium concentra-
tion in the ER. Then an appropriate variable measuring the free calcium
content of the whole cell isz 5 x 1 (CER/CC)y. Its temporal evolution
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follows

dz

dt
5

APM

CC
~Jin 2 Jout! 1

AG

CC
JG. (4)

Equations 2 and 4 constitute the basic model of the calcium balance of the
hepatocyte. The functional expressions for the participating calcium fluxes
are chosen as follows.

ER release

The gating kinetics of IP3R I have been well-characterized and detailed
kinetic schemes have been proposed and analyzed (Bezprozvanny et al.,
1991; DeYoung and Keizer, 1991; Bezprozvanny and Ehrlich, 1995). A
simplification of the scheme of DeYoung and Keizer (1991) has resulted in
the following model for the calcium release flux (Li and Rinzel, 1994):

Jrel 5 @k1~m`~P, x!w!3 1 k2#~y 2 x!, (5)

where P denotes the concentration of InsP3, and k1 and k2 are the rate
constants of maximal IP3R-mediated release and of a small leak flux,
respectively. Taking the concentration differencey 2 x as the driving force
of release neglects a potential influence of an ER membrane potential
(Marhl et al., 1997). The functionm` describes fast activation by calcium,
sensitized by the InsP3 concentration, as follows

m`~P, x! 5
P

dp 1 P

x

da 1 x
. (6)

The variablew describes slower inactivation with time-dependent kinetics.
The time constantt for calcium-dependent inactivation of the IP3R is of the
order of 1 s. However, the period of hepatocyte calcium oscillations is
longer, ranging from;30 s at maximal stimulation to several minutes for
low agonist dose, with calcium spikes lasting between 10 and 30 s (Cob-
bold et al., 1991; Thomas et al., 1991). This suggests that the time course
of IP3R inactivation does not play a significant role in determining the
timing of a calcium spike, and therefore in the present model we also
assumew to be in a quasi-steady state,w 5 w`(P, x), with (Li and Rinzel,
1994)

w`~P, x! 5
Q~P!

Q~P! 1 x
, Q~P! 5 d2

P 1 d1

P 1 d3
. (7)

Inserting Eq. 7 in Eq. 5 yields the calcium release flux as a function ofx,
y and the level of stimulation,P.

ER uptake and plasma membrane efflux

We take

JSERCA5 v3

x2

K3
2 1 x2 , Jout 5 v4

x2

K4
2 1 x2 . (8)

(Lytton et al., 1992; Camello et al., 1996). We do not account for a separate
effect of the sodium-calcium exchanger and consider its contribution to
calcium extrusion to be included in the above expression forJout.

Calcium influx

A “background” calcium leakage,v0, is assumed. Similarly to Dupont and
Goldbeter (1993), we choose a crude expression for calcium-release acti-
vated calcium entry by assuming that the average store concentration of
calcium decreases with the level of activation, and therefore calcium entry

increases withP, up to a maximal ratevc,

Jin 5 v0 1 vc

P

K0 1 P
. (9)

Gap-junctional flux

For simplicity, we assume connected cells to be isopotential. The calcium
flux from cell j into cell i can then be expressed as

JG,ij 5 Pij~xj 2 xi!. (10)

The gap junctional permeabilityPij is usually unaffected by the calcium
concentrations reached during cytosolic spikes in hepatocytes. An excep-
tion may be connexin 43, for which a reduction of junctional conductance
by calcium concentrations;500 nM has been observed in hepatoma cells
(Lazrak and Peracchia, 1993). However, the reduction took effect only
after 15 min, so that we takePij as constant and also symmetric,Pij 5 Pji .

We define the following structural characteristics of a cell

r 5
APM

CC
, a 5

AER

APM
, b 5

CER

CC
. (11)

Furthermore, let the junctional coupling coefficient be defined by

gij 5
AG,ijPij

CC,i
; (12)

note that despite symmetric permeabilities the coupling coefficientgij may
be asymmetric,gij Þ gji . In the following we assume symmetric coupling
and specialize to a pair of coupled cells, takingg12 5 g21 5 g. Using Eqs.
5–12 and expressingy in Eq. 5 as a function ofx and z, Eqs. 2 and 4,
governing the intracellular calcium balance of theith cell, become

dxi

dt
5 riHv0 1 vc

P

K0 1 P
2 v4

xi
2

K4
2 1 xi

2

1 aiFkr~x, P!bi
21~zi 2 ~1 1 bi!xi!

2 v3

xi
2

K3
2 1 xi

2GJ 1 g~xj 2 xi!,

(13)

dzi

dt
5 riSv0 1 vc

P

K0 1 P
2 v4

xi
2

K4
2 1 xi

2D
1 g~xj 2 xi!,

(14)

with the IP3R release function

kr~xi, P! 5 k1

Sd2

d1 1 P

d3 1 P
PxiD3

~dP 1 P!3~da 1 xi!
3Sd2

d1 1 P

d3 1 P
1 xiD3 1 k2

and the index pairs (i, j) 5 (1, 2) and (2, 1). The system 13–14 is easily
generalized to the case of more than two cells.

The parameter values are chosen as follows. From Lytton et al. (1992)
we takeK3 5 0.12mM and similarly chooseK4 5 0.12mM. For the IP3R
kinetics we use the values of Li and Rinzel (1994),da 5 0.4mM, dP 5 0.2,
d2 5 0.4 mM, and taked1 5 0.3 mM andd3 5 0.2 mM. For an estimate of
the structural parameters we assume a spherical cell of radius 6mm, with
the cytosolic compartment occupying a third of its volume. From the data
of Allbritton et al. (1992) on calcium diffusion inXenopusoocytes, one
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obtains an estimate of the cytosolic calcium buffering capacity 11
KBB0/(KB 1 x)2 (see above) between 20 and 40. In other cell types,
cytosolic buffering capacity appears in excess of 100 (Neher and Augus-
tine, 1992); we take an intermediate value of 75, yieldingr 5 0.02mm21.
About 10% of the cell volume is occupied by ER, of which in liver cells
one-third can be made up by smooth ER. Assuming a threefold higher
calcium buffering capacity in the ER than in the cytosol, we haveb 5 0.1.
Moreover, we takea 5 2. We now choose values for the rate constants that
yield results consistent with experimental observations. Incorporating the
unit of r, mm21 (to obtain the usual units of rate constants), we usev0 5
0.2mMs21, vc 5 4.0mMs21, v3 5 9.0mMs21, v4 5 3.6mMs21, k1 5 40.0
s21, andk2 5 0.02 s21. We have not found a value of the gap-junctional
permeability between liver cells in the literature. In the following,g will
treated as a crucial free parameter, and the model behavior will be studied
for a range ofg values.

As discussed in the Introduction, the variability of oscillation frequen-
cies of hepatocytes can have different sources. In the experiments by
Tjordmann et al. (1997), random heterogeneity between cells should play
a significant role. Of the three types of parameters present in the single-cell
model (g 5 0), apparent binding constants, rate constants, and structural
parameters, the binding constants are likely to show the least variation as
they characterize elementary binding and transformation steps. The rate
constants are proportional to the concentrations of enzyme or IP3R, and
will also be assumed to be (approximately) uniform across the cell popu-
lation. The structural parameters are determined in part by the geometric
properties, ER, and plasma membrane areas and ER and cytosolic volumes
(Eq. 11). Cell and ER geometry may vary between hepatocytes, and on this
basis we postulate that the structural parametersa, b, and r can have
specific values for each cell (indicated in by the subscripts in Eqs. 13 and
14). Usually, a uniform InsP3 value in the cells will be assumed, due to
uniform agonist stimulation (Tjordmann et al., 1997). However, there
appear also to be intercellular differences in agonist receptors (particularly
between cells in different regions of the liver lobule; Tordjmann et al.,
1998). This could result in differences in InsP3 concentration even if the
agonist is applied uniformly, so that we will also study the caseP1 Þ P2.

RESULTS

Signaling heterogeneity of single cells

The calcium dynamics of isolated hepatocytes are well-
characterized experimentally. In the case of the agonists
noradrenalin and vasopressin there exists a critical agonist
dose above which a hepatocyte responds with regular cal-
cium oscillations. Cytoplasmic oscillations are accompa-
nied by (phase-shifted) oscillations in ER calcium content.
The period of the oscillations decreases with increasing
agonist dose (usually in the range between 3 min and;30
s), whereas their amplitude remains practically unchanged
(;500 nM). Individual spikes are relatively broad, lasting
10 s and longer; the first spike is similar to the following
ones. It sets in after stimulation with an agonist-dose-de-
pendent latency. At low level of stimulation latency may be
longer than 1 min, whereas for large agonist doses latency
can be as short as 10 s (Rooney et al., 1989).

In the case of a single hepatocyte (g 5 0), the model
13–14 accounts for these experimental results. Fig. 1,a–c
shows a computed solution forP 5 2 mM. Varying the level
of agonist stimulation,P, the amplitudes of cytosolic cal-
cium spikes remain nearly constant (Fig. 1d), whereas the
period decreases significantly with increasingP (Fig. 1 e).
At high levels of stimulation (P . 5 mM), there is a slight
increase of the period in the model, a phenomenon which, to

our knowledge, has not been reported in the experimental
literature. In the following we useP-values between 1.5 and
5 mM. Finally, latency decreases concomitantly with period,
following, in accord with experimental data, a near-linear
relation (Fig. 1f). The latency values are somewhat smaller
than in experiments, probably because part of the latency
interval is due to the activation of InsP3 production, which
is taken as instantaneous in the model.

The critical value of stimulation at which the rest state
becomes unstable and calcium oscillations ensue corre-
sponds to a Hopf bifurcation in the model dynamics; at very
large agonist doses, oscillations disappear again via a sec-
ond Hopf bifurcation, and the steady state regains stability
(Fig. 1 d; for details see Appendix). One property of the
experimental system that does not appear to be described
correctly in the model is the response of a single cell in
calcium-free solution (Jin 5 0). Upon stimulation the model
exhibits just a single calcium spike, while in hepatocytes
one can observe damped calcium oscillations that com-
pletely disappear only after a number of spikes. One reason
for this may be the fact that the model overestimates the
contribution of the plasma membrane calcium fluxes to
calcium removal from the cytoplasm, because it neglects the
contribution of calcium exchange with other cellular com-
partments, such as mitochondria. To investigate this idea
further would necessitate the introduction of other calcium
compartments and associated model variables. However, for
the dynamics in calcium-containing solution that are studied
here, we therefore expect the two-variable model (Eqs. 13
and 14) of a single cell to be adequate. In summary, we
conclude that (except for the behavior in calcium-free so-
lution) a single, functionally uniform calcium store can
generate the characteristic features of an average hepatocyte
calcium oscillator.

Can the variation of the structural parametersa, b, andr
account for the variability of frequency responses at the
constant agonist dose seen in the experiments by Tjordmann
et al. (1997)? Changes ina leave the period practically
constant, even whena changes;10-fold (data not shown).
By contrast, the period increases appreciably whenb is
increased (Fig. 2a). For larger stimuliP, this effect be-
comes somewhat less pronounced. The parameterb denotes
the ratio of the effective volumes of the ER and the cyto-
plasm (Eq. 11), so that the dependence of the period onb
indicates that the refilling process of the ER is crucial in
determining the oscillation period. The effect of a change in
r is straightforward to evaluate by realizing that it corre-
sponds to a rescaling of time in Eqs. 13 and 14,t 5 rt,
provided thatg 5 0. Therefore, the period is proportional to
r21: smaller cells oscillate faster (Fig. 2b). Differences
between cells could occur in more than one structural pa-
rameter. For example,a andb could change concomitantly
because of differences in ER content (cf. Eq. 11; note,
however, that this is not necessarily the case, as the surface
and the volume of the ER could be quite unrelated if there
is random variation of ER shape). We have checked the
effect of concomitant changes ofa andb, using the scaling
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a 5 r2a0 andb 5 r3b0 and varyingr. The oscillation period
still increases monotonically withr3, at a magnitude similar
to that of Fig. 2. These results show that differences in the
structural parametersb andr cause frequency heterogeneity
between individual cells. In the following section we em-
ploy variation of b between 0.05 and 0.3 andr between
0.0067 and 0.04 in the case of coupled cells. Varying the
uniform InsP3 level between 2mM # P # 4 mM, this spans
a range of oscillation period from 29 s to 4.6 min. Alterna-

tively, frequency heterogeneity is generated by varying lev-
els of InsP3 between the cells (Fig. 1e).

Synchronization of identical cells

To study gap-junctional communication of calcium signals,
a pair of coupled cells, and in the next subsection also, a
linearly coupled cell triplet are considered. By using these
we are able to investigate the salient properties of synchro-

FIGURE 1 Calcium oscillations in the model for a single hepatocyte. (a–c) Oscillation forP 5 2 mM: (a) cytosolic calcium, (b) total calcium, and (c)
trajectory in the phase plane (dotted linesare the nullclines, N-shaped fordx/dt 5 0 and straight vertical line fordz/dt 5 0); initial condition: rest state
without agonist (P 5 0). (d–f) show characteristics of the oscillations versus InsP3 level: (d) bifurcation diagram for cytosolic calcium (solid line, stable
rest states,dashed line, unstable rest states,F, minima and maxima of oscillations), supercritical Hopf bifurcations occur atP 5 1.45mM and 8.892mM,
(e) period of oscillations, and (f) latency (linear fit for points aboveT 5 70 s). Parameter values are as given in text. Numerical methods: temporal
integration with 4th-order Runge-Kutta method, implemented in xpp by B. Ermentrout (http://www.pitt.edu/;phase), bifurcation analysis using AUTO
(Doedel, 1981).
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nization in the experiments by Tjordmann et al. (1997) on
linearly coupled hepatocyte triplets. We expect the intrinsic
heterogeneity of signaling frequencies to significantly in-
fluence the dynamics of the cell pair. To establish a point of
reference, we first study a pair of identical cells.

In structurally identical (a1 5 a2, b1 5 b2, r1 5 r2),
uniformly stimulated cells, calcium oscillations set in at the
level of stimulation at which they appear in a single cell
(P 5 1.45mM; cf. Appendix). If the cells are initially out of
phase, they will synchronize in time. Synchronization is
observed for arbitrarily small degree of couplingg . 0. The
synchronized oscillations have the same shape and period in
each cell as the oscillations of a single cell at the same value
of P. (Notice that the junctional flux in Eqs. 13 and 14 is
identical to zero in the synchronized state.) Stability analy-
sis shows that there is also a second type of oscillation.
These are antisynchronous oscillations in which one cell
oscillates half a period out of phase with the other. The
primary branch of antisynchronous oscillations always bi-
furcates after the bifurcation to synchronous oscillations has
occurred, and was found to be unstable. By contrast, the
synchronous oscillations are generally stable (Fig. 3). The
equivalents of the stable, synchronous oscillations are ex-
pected to be found experimentally, while unstable solutions
will not be observed.

Phase-locking and synchronization in coupled
heterogeneous cells

Cells will not be perfectly identical. Differences inb, r, or
P result in different intrinsic oscillation periods. Thus there
can be no synchronized state in which both cells follow the
time course of their intrinsic calcium oscillations without a
mutual phase difference, as in the case of identical cells.
Rather, their intrinsic periods must be equalized. We find
that this can be achieved by gap-junctional calcium diffu-
sion, partially or completely. Accordingly, there are three
types of oscillatory solutions for a heterogeneous cell pair.
If there is no junctional calcium diffusion, the cells oscillate

at their own intrinsic frequencies and, in general, there is no
fixed phase relation between the cells. This also appears to
be the case when coupling is very small (Fig. 4a). When the
degree of coupling increases, the phases of the two cells can
become locked. Fig. 4b depicts a case of 2:1 locking.
(Possibly Fig. 4a also does not show true independence, but
harmonic locking with the frequency ratio being composed
of very large rational numbers. Numerically and also ex-
perimentally, this cannot easily be distinguished from inde-
pendence.) Increasing the degree of coupling further, the
locking ratios change, getting closer to 1:1, and eventually
the cells become synchronous (Fig. 4c). Strictly speaking,
there is still a nonvanishing phase difference between the
peaks of the calcium spikes in the two cells. However,
spikes occur at a ratio of 1:1 and immediately after one
another, so that we will use the term synchrony for this type
of solution.

This numerical example demonstrates that cells with a
ratio of intrinsic frequencies as large as two can synchronize

FIGURE 2 Period of oscillations under variation of the structural parameters (a) b and (b) r, for three different InsP3 levels,P (2 mM, solid lines; 3 mM,
long-dashed lines; 4 mM, dashed lines). r is taken dimensionless, as the unit ofr (mm21) has been incorporated in the rate constants in Eqs. 13 and 14.

FIGURE 3 Asymptotic solutions of two coupled cells versus stimulus
level, P. Stable and unstable steady states (solid line, dashed line) and
stable limit cycles (F) are identical to Fig. 1 (d); the latter correspond to
synchronous oscillations of the cell pair;E mark the branch of unstable
antisynchronous oscillations. Parameters as in text,g 5 0.1 s21.
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and exhibit calcium oscillations with a common frequency.
The transition from a nonsynchronized state (typically from
a harmonically locked state) to synchronization occurs, for
a particular level of stimulation, at a critical value of the
coupling coefficient,gc. For g . gc, the cells synchronize.
To obtain a more general picture of the synchronization
properties of the model, we have studied this transition to
synchrony for intercellular heterogeneity introduced by
varying eitherb2, r2, or P2, keepingb1, r1, andP1 constant.
Continuing numerically the branches of stable synchronous
solutions for decreasingg, we observed two types of bifur-
cations from 1:1 locking (synchrony) to harmonic locking
different from 1:1 (asynchrony). Period doubling bifurca-
tions gave rise to stable solutions with 2:1 locking, and limit
points in the synchronous branch marked the appearance of
stable phase-locked solutions of ratios close to, but different
from, 1:1. For both types of bifurcations, the synchronous
solution became unstable wheng was decreased further.
Therefore, theg-value at which either period doublings or
limit points occur is the critical coupling,gc. The results
obtained for variation of eitherb2 or r2 at different levels of
uniform stimulation (P 5 2, 3, 4mM) are shown against the
period ratio of the two cells in isolation in Fig. 5a. As
expected, the value ofgc in each case increases with in-
creasing difference of the intrinsic oscillation periods.

The principal shape of the region of synchrony does not
depend on the level of stimulation or on whetherb2 or r2

was varied to generate the difference in intrinsic periods.
For a coupling coefficient of;0.06 s21, the region of
synchrony spans a range of intrinsic period ratios larger than
from 0.7 to 2.0, encompassing the range for which synchro-
nization was observed experimentally by Tjordmann et al.
(1997). For comparison, we also calculatedgc when the
variation of intrinsic periods results from different levels of
InsP3 and the structural parameters are homogeneous (Fig.
5 b). There is no principal difference to the case of structural
heterogeneity. The critical coupling is even a little smaller;
for the 0.7–2.0 synchronization range,g 5 0.04 s21 is
sufficient.

The common period of the two cells at the transition to
synchrony shows an interesting behavior, again with a very
similar picture for variation of structural parameters andP
(Fig. 5, c and d). Generally, the common period is quite
close to the period of the faster of the two cells in the
absence of junctional coupling. Moreover, in many cases
the common period atgc is actually somewhat smaller than
that of the faster cell (Tc/Tfast , 1). This is particularly
pronounced when the period difference is due to variation in
r and inP; larger variations inb tend to result in a common
period somewhat longer thanTfast.

With increasingg the period increases, and for large
coupling eventually approaches a value that in most cases is
just below the arithmetic mean of the two intrinsic periods.
(For a few parameter values, we have observed nonmono-
tonic behavior; the common period first increased toward
the period of the slower cell at intermediate values ofg,
before falling close to the mean.) Experimental data of
calcium oscillations with and without gap-junctional cou-
pling between hepatocytes show that mostly the fastest cell
dominates the frequency of synchronous oscillations (cf.
Figs. 2, 4, and 5 in Tjordmann et al., 1997; but also see their
Fig. 7, where the synchronous oscillations appear to be
slower than those of the fastest cell). In particular, in Fig. 4
of Tjordmann et al. (1997) the collective synchronous os-
cillations are faster than the fastest of the three cells in the
uncoupled state. The model clearly reproduces these behav-
iors. We found that when eitherr or P varies between the
cells, the common period stayed close to that of the faster
individual (Tcommon 2 Tfast/uT1 2 T2u , 0.1) for g up to
values between 0.1 and 0.2 s21 and the entire range of
period ratiosT2/T1 depicted in Fig. 5.

Another important feature of the experimental system is
that synchronization is rapid, usually achieved within one or
two periods of oscillation. This is also the case in the model.
Even for coupling coefficients close togc, we find that the
cell pair synchronizes within one or two periods. An exam-
ple with temporary disruption of gap-junctional communi-
cation is shown in Fig. 6a. Upon stimulation, both cells

FIGURE 4 Types of oscillations of a pair of coupled cells with different intrinsic periods,T1,2; cell 1 (solid line): b1 5 0.1 (T1 5 92.7 s), cell 2 (dashed
line): b2 5 0.2 (T2 5 174 s);P 5 2.0. (a) unlocked (g 5 0.001 s21), (b) harmonic locking, 2:1 (g 5 0.01 s21), and (c) phase locking (“synchrony,”g 5
0.07 s21).
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oscillate synchronously, but desynchronize when gap-junc-
tional coupling is disrupted att 5 200 s. When coupling is
restored, cells synchronize immediately. This simulation
should be compared to Fig. 4 of Tjordmann et al. (1997).

In the experimental system, synchronization cannot ex-
tend across an intermediate cell in which IP3Rs are blocked
by heparin (Fig. 7 in Tjordmann et al., 1997). We account
for heparin treatment in the model by settingk1 5 0 and,
since ER stores will remain filled and release-activated
calcium entry will not operate,vc 5 0. Indeed, calcium
cannot diffuse sufficiently across an inhibited cell to induce
synchronization between the adjacent cells on either side
(Fig. 6 b; this holds for g , 0.1 s21). However, when
calcium signaling in the intermediate cell 2 is also active
(before blockage by heparin), the frequency of calcium
oscillations in cell 1 is imprinted on the distant cell 3. This
indicates that the mechanism of synchronization can operate
over several cells on the basis of calcium diffusion between
adjacent cells, if all the cells have active calcium signaling.
(We have found that the activity of cell 2 need not neces-
sarily be oscillatory to transmit synchronization between

cells 1 and 3. InsP3 levels in the so-called excitable regime
are sufficient. In this regime IP3Rs are sensitized such that
the cell does not oscillate autonomously, yet solitary cal-
cium pulses can be evoked by junctional calcium influx;
e.g.,P 5 1.3mM, g 5 0.1 s21 between C1/C2 and C2/C3.)

DISCUSSION

Intercellular synchronization by junctional
calcium diffusion

We have investigated a model of the coupling of hormone-
evoked calcium oscillations in a hepatocyte pair by gap-
junctional diffusion of cytosolic calcium. Under conditions
of uniform agonist stimulation, calcium oscillations in hepa-
tocytes with intact gap junctions can synchronize rapidly,
even if the cells in isolation have widely different intrinsic
oscillation frequencies. Synchronization occurs if the cou-
pling coefficient for calcium diffusion exceeds a critical
value, gc. For g , gc, cells oscillate either with rational
frequency ratios (harmonic locking) or independently. In

FIGURE 5 Dependence of characteristic features of synchronization in a cell pair on the ratio of the intrinsic periods of calcium oscillationsT2/T1.
Heterogeneity was either introduced by varying structural parameters (left column) or InsP3 (right column) between cells. (a and b) critical coupling
coefficients for junctional calcium diffusion,gc, at which transition to synchrony (1:1 locking) takes place; (c andd) ratios of the common period of the
cell pair atgc, Tc, to the period of the faster of the two cells in the uncoupled state,Tfast; ratios less than 1 indicate that the coupled pair oscillates faster
than the faster individual cell. In the case of the largest ratio (just below 1.4, that is, a relatively slow common frequencyTc), Tslow is still more than twice
Tc. In (a) and (c) eitherb2 (filled symbols) or r2 (open symbols) were varied atP 5 2 mM (F, E), 3 mM (■, h) and 4mM (Œ, ‚). In (b) and (d) P1 5
2 mM, P2 varied. Other parameters as in text.
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the case of synchrony, for not too large coupling coeffi-
cients the faster cell dominates the collective frequency
(which can be even slightly above the intrinsic frequency of
the faster cell). However, with increasingg the common
frequency decreases, to attain an intermediate value be-
tween the individual frequencies of the two cells for large
coupling (g . 1 s21). Thus the model predicts that syn-
chronization of calcium oscillations in heterogeneous cells
with the properties observed in the experiments of Tjord-
mann et al. (1997), will occur in a window of coupling
coefficientsg between;0.04 s21 and 0.2 s21.

The spatiotemporal range of calcium at moderate cytoso-
lic buffering capacities (up to;100) is sufficient only for
diffusion into the directly adjacent cell (Allbritton et al.,
1992). Synchronization, however, may extend beyond ad-
jacent cells, if calcium signaling is active in all participating
cells (Fig. 6b). Thus our model suggests that intercellular
synchronization of calcium oscillations occurs if two con-
ditions are met: 1) cells are coupled by gap junctions suf-
ficiently strongly, and 2) the IP3R in all cells are sensitized
by agonist. In the liver, periodic calcium waves on the larger
scale of liver lobules have been observed (Nathanson et al.,
1995; Robb-Gaspers and Thomas, 1995). It will be inter-
esting to investigate how these are established on the basis
of the mechanism of small-scale synchronization studied
here. A hypothesis suggested by the present study and the
experimental observations by Tordjmann et al. (1998) is
that these waves are phase waves that are organized by
large-scale gradients in agonist sensitivity of the liver cells;
this requires further study.

Repetitive calcium release via IP3R and gap-junctional
coupling also occur in other cell types, so that synchroni-
zation of calcium oscillations should not be restricted to
hepatocytes. Indeed, synchronization has been observed in
articulate chondrocytes (D’Andrea and Vittur, 1996) and in
kidney cells (Rottingen et al., 1997) upon uniform agonist
application, and dependent on intact gap junctions. More-

over, synchronization should not be restricted to IP3R, but
can be expected to be supported also by the calcium-in-
duced calcium release property of the RyR.

Gap junctional permeability for calcium

The prediction of a range ofg-values for which the model
results agree with the experimental data on intercellular
synchronization raises the question of the experimental de-
termination ofg in hepatocytes and other synchronizing cell
types. Taking the definition Eq. 12 and the assumptions on
cytoplasmic volume and calcium buffering made above, we
obtain forg 5 0.06 s21 a total permeabilityAGP 5 1.36 z
1029 cm3 s21. This is in good agreement with a measured
junctional permeability of 1–3z 1029 cm3 s21 for tetraethyl
ammonium (Verselis et al., 1986). In general, junctional
conductances,s, are more easily measured than permeabili-
ties. Under the (oversimplifying) assumptions that all ionic
species carrying the junctional current have the same per-
meabilities and that their concentrations on both sides of the
gap junctions are equal, one can derive the following rela-
tion between junctional permeability and conductance (from
the Goldman equation for electrolyte fluxes):AGP 5 RTs/
F2I, where R, T, F, and I denote the gas constant, the
absolute temperature, the Faraday constant, and the ionic
strength of the solution carrying the junctional current. Via
this and Eq. 12 one may obtain estimates forg from junc-
tional conductance measurements. AssumingI 5 200 mM,
g 5 0.06 s21 corresponds to a junctional conductance
between two hepatocytes of 1mS. This value is quite large,
though not completely outside the range of measured con-
ductances. For comparison, astrocytes in primary culture
have s 5 15 nS (C. Giaume, personal communication).
However, astrocytes connect only via thin processes, so that
the area of junctional contact between two cells is likely to
be considerably smaller than in hepatocytes, resulting in a

FIGURE 6 Model “experiments”: (a) temporary blocking of gap junctions between adjacent cells (synchronized period 50.0 s, when uncoupledT1 5 92.7
s, T2 5 52.1 s); (b) synchronization in a linear cell triplet terminated by injection of heparin into the intermediate cell (C1–C2–C3, synchronized period
61.6 s, when uncoupled but without heparinT1 5 61.7 s,T2 5 92.7 s,T3 5 97.3 s). Parameters: (a) r1 5 0.02,r2 5 0.035,g 5 0.06; (b) r1 5 0.03,r2 5
0.02001,r3 5 0.021,g 5 0.08; continuous stimulation withP 5 2 mM. For further details see text.
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smaller conductivity. (Interestingly, calcium oscillations in
adjacent astrocytes are generally found to be asynchronous.)

In a recent modeling study, Wilkins and Sneyd (1998)
attempted to estimate the gap-junctional permeability be-
tween hepatocytes from a comparison of measured intra and
intercellular wave speeds, assuming that the wave speeds
are proportional to the square roots of the relevant (effec-
tive) diffusion coefficients. Taking a typical cell length of
10 mm, the estimate given translates into a coupling coef-
ficient of 0.01 s21: appreciably smaller than our estimate.
However, it is not clear whether the theoretical basis of the
argument in Wilkins and Sneyd (1998) is correct: the pro-
portionality of diffusion coefficient and wave speed holds
approximately only for diffusive waves, such as in an ex-
citable medium. The waves observed in the liver need not be
of this type. To the contrary, our results taken together with
experimental observations on large-scale variations in ex-
citability in the liver (Tordjmann et al., 1998) suggest that
these could be phase waves set up by ordered gradients in
intrinsic oscillation periods of the cells.

From a theoretical viewpoint, the model may overesti-
mate theg-values required for synchronization because of a
lack of spatial resolution. It implicitly assumes that calcium
entering through gap junctions becomes uniformly distrib-
uted over the cytosolic compartment and thus exerts its
influence on the calcium dynamics. For the effective (buff-
ered) diffusion coefficients measured by Allbritton et al.
(1992), this is reasonable; some distribution, though not a
uniform one, will be achieved on a time scale of seconds. In
this picture, junctional calcium is therefore diluted in the
whole cytosolic compartment, including the buffer proteins.
However, calcium entering the cell may primarily affect a
portion of the calcium store relatively close to the gap
junctions. In turn the store could amplify the junctional
signal. If such a local amplification of junctional signals
takes place, calcium only needs to act in a smaller, peri-
junctional space. To attain a certain concentration in such a
smaller volume, the coupling coefficient required for syn-
chronization, and the corresponding junctional permeabili-
ties and conductances, probably can be smaller than those
estimated above. This problem clearly deserves further
study.

Other factors of intercellular calcium signaling

In various studies, factors other than calcium diffusion have
been implicated to mediate the intercellular coupling of
calcium signals. Calcium wave propagation in airway epi-
thelium upon focal stimulation appears to involve the junc-
tional diffusion of InsP3 across several cells (Sanderson,
1995). A mathematical model based on intra and intercel-
lular InsP3 diffusion and only intracellular calcium diffusion
can reproduce such diffusive waves, if a junctional InsP3

permeability of at least 2mm s21 is assumed across the
contact area between two cells (Sneyd et al., 1995) (with a
cell length of 10mm this corresponds to a coupling coeffi-

cient of 0.2 s21). However, InsP3 is unlikely to play the role
of the synchronizing signal in hepatocytes. PLC is not
affected by calcium in hepatocytes (Bird et al., 1997).
Therefore, InsP3 should attain a more or less constant value
without influencing phase differences of the calcium oscil-
lations in adjacent cells. There could be an effect of calcium
on InsP3 via a calcium-dependence of InsP3 degradation. Of
the two enzymes degrading InsP3, the InsP3 3-kinase is
activated by calcium. In a recent modeling study this had
only a minor influence on the InsP3 level (Dupont and
Erneux, 1997), causing periodic fluctuations around its
steady-state level. Whether such a small effect could be
sufficient to mediate intercellular synchronization on its
own or enhance it remains to be studied.

In various cell types, paracrine signals, such as ATP, are
secreted upon stimulation of calcium signaling that in turn
may evoke calcium signals in neighboring cells. Examples
are hepatocytes (Schlosser et al., 1996), glial cells (Verkh-
ratsky et al., 1998) and osteoblasts (Jorgensen et al., 1997).
In the experiments by Tjordmann et al. (1997), paracrine
coupling does not participate in the mechanism of synchro-
nization (probably because a paracrine signal was washed
out). Moreover, a functional study on vasopressin-induced
glycogenolysis in liver argues against the involvement of
secreted ATP in intercellular synchronization (Eugenin et
al., 1998). So far, paracrine signaling has mainly been
implicated in the spread of calcium waves (e.g., Verkh-
ratsky et al., 1998; Jorgensen et al., 1997).

These examples show that (at least) three mechanisms of
intercellular calcium signaling can be present in a multicel-
lular system. These may play different roles, depending on
the mode of external stimulation, and whether intercellular
signaling involves the synchronization of oscillations or
wave propagation. For synchronization, junctional calcium
diffusion appears crucial, while waves may involve InsP3

diffusion, paracrine signals, and calcium diffusion.

APPENDIX: LINEAR STABILITY ANALYSIS

We carry out the linear stability analysis of the steady states of the
single-cell and cell-pair models to obtain information on the onset and
parameters domains of calcium oscillations.

Single cell

Consider Eqs. 13 and 14 for a single cell,g 5 0. Denote the right-hand
sides of Eq. 13 and Eq. 14 byf(x, z; P) and g(x; P), respectively. The
cytosolic free calcium concentration at steady state is obtained from the
conditiong(x; P) 5 0 as

x#~P! 5 Î@v0 1 vcP/~K0 1 P!#K4

v4 2 v0 2 vcP/~K0 1 P!
. (15)

We require a positive steady state, hencev4 . v0 1 vcP/(K0 1 P) . 0
(which is satisfied for the reference parameter set forP , 20 mM).
Equation 15 also defines theż-nullcline in the (x, z) phase plane (cf. Fig. 1
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c). The ẋ-nullcline, defined byf(x, z; P) 5 0, is given by

z~x; P! 5 ~1 1 b!x 1 bv3

x2

K3
2 1 x2

3 1k1

Sd2

d1 1 P

d3 1 P
PxD3

~dP 1 P!3~da 1 x!3Sd2

d1 1 P

d3 1 P
1 xD3 1 k22

21

.

(16)

Note that theẋ-nullcline is expressed as a unique functionz(x) for x . 0.
Together with the fact that theż-nullcline is a straight line parallel to thez
axis (Eq. 15), this implies that there is always a unique intersection of the
two nullclines and hence a unique positive steady state of the model (x#, z#);
x# is given by Eq. 15, andz# is found by substituting Eq. 15 in Eq. 16. The
stability of the steady state is determined by the eigenvalues of the Jacobian
of system 13–14 at (x#, z#),

J~x#, z#! 5 S fx fz
gx 0 DU

x# ,z#
, (17)

wherefx denotes the partial derivative (­/­x)f(x, z; P), etc. Note thatgz 5
0. We always have

fz~x, z; P! . 0, gx~x; P! , 0 (18)

for x . 0, and hence detJ 5 2fz(x#, z#; P)gx(x#; P) . 0. Therefore the steady
state is linearly stable for trJ 5 fx(x#, z#; P) , 0 and becomes unstable via
a Hopf bifurcation whenfx(x#, z#; P) changes sign:

fx~x#, z#; P! 5 0. (19)

Geometrically, Eq. 19 holds when theż-nullcline intersects theẋ-nullcline
at its local maximum or minimum (cf. Fig. 1c). Equation 19, in conjunc-
tion with Eqs. 15 and 16, can be used to locate the Hopf bifurcation
numerically (Fig. 7,solid line).

Pair of identical cells

With the notation of the previous subsection, we write the system govern-
ing the dynamics of a pair of symmetrically coupled, identical cells as

ẋ1 5 f~x1, z1; P! 1 g~x2 2 x1!,

ż1 5 g~x1; P! 1 g~x2 2 x1!,

ẋ2 5 f~x2, z2; P! 1 g~x1 2 x2!,

ż2 5 g~x2; P! 1 g~x1 2 x2!.

The stationary state for each cell is identical to that of a single cell; positive
steady states for which the calcium concentrations differ in the two cells do
not exist. This can be seen as follows. Suppose thatx#1 . x#2. Then we
would haveJout,1 . Jout,2 (Eq. 8). BecauseJin is the same in both cells,
x#1 . x#2 would require a compensating junctional calcium flux from cell 2
to cell 1, in contradiction to Eq. 10.

Denote the deviations from steady state byx̂i(t) 5 xi(t) 2 x# andẑi(t) 5
zi(t) 2 z#, i 5 1, 2, and introduce the vectorsh(t) 5 (x̂1(t) 1 x̂2(t), ẑ1(t) 1
ẑ2(t))

Á andn(t) 5 (x̂1(t) 2 x̂2(t), ẑ1(t) 2 ẑ2(t))
Á (cf. also Wolf and Heinrich,

1997). The stability of the steady state of the cell pair is governed by

d

dtSh
nD 5 S J~x#, z#! 0

0 J~x#, z#! 2 2gB DSh
nD , (20)

where

B 5 S 1 0
1 0 D .

Equation 20 shows that the sums of thex andz concentrations of the two
cells, h, undergo a Hopf bifurcation at the same parameter values as the
single-cell dynamics exhibit a Hopf bifurcation (condition 19). The con-
centration differences,n, exhibit a Hopf bifurcation, when tr(J 2 2gB) 5
0, or

fx~x#, z#; P! 5 2g; (21)

Equation 18 implies det(J 2 2gB) 5 2(gx 2 2g)fz . 0. Therefore, we have
two kinds of primary bifurcations in the two-cell system, a Hopf bifurca-
tion giving rise to synchronous oscillations (Eq. 19) and a Hopf bifurcation
to antisynchronous oscillations (Eq. 21). In the synchronous state, the
oscillations in each cell are identical to the oscillation of a single cell,
without phase differences between the cells; as a consequence, junctional
calcium fluxes vanish. Comparing conditions 19 and 21, it can be seen that
the bifurcation to synchronous oscillations always precedes the bifurcation
to antisynchronous oscillations. Using AUTO (Doedel 1981), we found
that for the parameter sets checked these primary branches of synchronous
and antisynchronous oscillations were stable and unstable, respectively,
immediately after the bifurcations. Forg . 0.025 s21 we did not detect
secondary bifurcations on these branches (cf. Fig. 3). Secondary bifurca-
tions were sometimes found forg , 0.025 s21. The only effect of
secondary bifurcations we have been able to detect is that in some very
small ranges of stimulation stable antisynchronous oscillations can also
exist, in addition to stable synchronous oscillations (usually somewhere
within 1.46mM , P , 1.6 mM). However, the basin of attraction of such
stable antisynchronous solutions is exceedingly small, so that they are only
found for carefully chosen initial conditions. Moreover, we have found that
such solutions are destroyed by introducing very slight heterogeneity
between the two cells.

Pair of different cells

If the cells differ inb or r, but have identical calcium influx,Jin, the steady
states for cytosolic calcium will be identical in both cells,x#1 5 x#2 5 x#. The
flux argument of the preceding subsection again yields uniqueness of this

FIGURE 7 Locus of the first Hopf bifurcation of system 13–14 for a cell
pair with varying degree of asymmetry, in theP 2 k1 plane. Oscillations
are found inside the bifurcation lines. Parameters:b1 5 0.1, b2 varies
(values indicated at the curves),g 5 0.1 s21, other parameters as in text.
The solid line forb2 5 b1 5 0.1 is identical to the Hopf bifurcation curve
of a single cell.
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steady state. If onlyr varies between the cells,z#1 5 z#2, the calcium
contents of the stores will be identical, whereas variation ofb causesz#1 Þ
z#2. In any case, normal modes of the linearized problem cannot be intro-
duced as easily as in the case of identical cells. The characteristic equation
associated with the Jacobian at steady state is the quartic

l4 1 ~2g 2 a1 2 a2!l
3

1 @a1a2 2 b1c1 2 b2c2 1 g~2a1 2 a2 1 b1 1 b2!#l
2

1 @a1b2c2 1 a2b1c1 2 g~a1b2 1 a2b1 1 b1c1 1 b2c2!#l

1 b1b2c1c2 2 gb1b2~c1 1 c2! 5 0, (22)

with

a1,2 5 fx~x#, z#1,2; b1,2, r1,2!,

b1,2 5 fz~x#, z#1,2; b1,2, r1,2!,

c1,2 5 gx~x#; r1,2!.

We have determined the eigenvalues numerically for certain parameter sets
andg 5 0.1 s21 and find again two types of primary Hopf bifurcations, one
to near-synchronous and another to near-antisynchronous oscillations. The
locus of the synchronous Hopf bifurcations in theP 2 k1 plane is shown
for varying degrees of heterogeneity inb in Fig. 7. As a rule, the bifur-
cation curve surrounds a region in which stable synchronous oscillations
are found. We have found that secondary bifurcations can also occur from
the surfaces of primary limit cycles in some regions. However, a thorough
investigation of these is beyond the scope of the present paper.

I thank Prof. Reinhart Heinrich for critical reading of the manuscript.
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