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Cells adjust gene expression profiles in response to environmental
and physiological changes through a series of signal transduction
pathways. Upon activation or deactivation, the terminal regulators
bind to or dissociate from DNA, respectively, and modulate tran-
scriptional activities on particular promoters. Traditionally, indi-
vidual reporter genes have been used to detect the activity of the
transcription factors. This approach works well for simple, non-
overlapping transcription pathways. For complex transcriptional
networks, more sophisticated tools are required to deconvolute
the contribution of each regulator. Here, we demonstrate the
utility of network component analysis in determining multiple
transcription factor activities based on transcriptome profiles and
available connectivity information regarding network connectiv-
ity. We used Escherichia coli carbon source transition from glucose
to acetate as a model system. Key results from this analysis were
either consistent with physiology or verified by using independent
measurements.

Bacteria respond to environmental changes through a variety
of sensor proteins, which eventually relay the signals to

corresponding DNA binding proteins to modulate transcription.
The DNA binding transcription regulators, or transcription
factors (TFs), typically require posttranscriptional modification
or ligand binding to assume an active conformation, which may
bind to DNA and either positively or negatively regulate tran-
scription. Here, the activity of a TF is defined as the concen-
tration of its subpopulation capable of DNA binding. The
collective activities of TFs can thus be regarded as the physio-
logical state of the cell. Determining these TF activities (TFAs)
allows better understanding of how cells respond to changes in
the environment. Careful experimental studies in the past few
decades have identified conditions that perturb each individual
TF independent of others. Although such ideal conditions
allowed useful characterization of molecular mechanisms, most
environmental perturbations are complex and are likely to
provoke multiple regulatory systems simultaneously. Without a
proper method of decomposing the regulatory signals, it is
difficult to investigate how microorganisms coordinate various
regulatory pathways upon an environmental challenge.

Here, we report the use of network component analysis (NCA)
recently developed in our group (1) to determine the dynamics
of the activities of various TFs during a physiological process.
This approach uses both DNA microarray data and partial
information regarding the membership of regulons as defined by
each TF in question. It contrasts with other approaches, such as
singular value decomposition (2) or independent component
analysis (3), in that it does not depend on orthogonality and
statistical independence. Rather, it uses biological information
regarding regulatory network topology, even when the topology
is incompletely defined. Furthermore, NCA differs from model-
based parameter estimation (4) because it allows deconvolution
of multiple regulatory pathways.

We use the Escherichia coli transition from glucose to acetate
media as an example. When switching from a glycolytic condi-
tion to a gluconeogenic condition with acetate as the sole carbon

source, E. coli is known to induce a significant change in
metabolic genes (5). In particular, the glyoxylate shunt (ace-
BAK), the tricarboxylic acid (TCA) cycle, and the acetate uptake
gene (acs) are up-regulated along with other genes under
catabolite repression (6). The gene expression pattern has been
studied by comparing the balanced growth culture in glucose and
acetate media (6). However, how the cell coordinates the
transition from one condition to the other during the adaptation
phase has not been characterized. This adaptation phase pro-
vides an excellent case to demonstrate the utility of NCA. In
addition, we validate the results of NCA by comparing the
predicted TFA of a regulator, catabolite repressor protein
(CRP), with the measured cAMP concentrations.

Materials and Methods
Strain and Culture Conditions. E. coli BW25113 [F-(araD-
araB)lacZ4787lacIq-4000 LAM-rph-1 (rhaD-rhaB) hsdR514] was
used for transcriptome analysis. Cells were grown in M9 mini-
mum medium (7) containing either 0.5% (wt�vol) glucose or
0.25% (wt�vol) acetate. In transition experiments, cells were
grown to OD600 of 0.5–0.6 in M9 glucose medium, chilled quickly
in ethanol�dry ice bath, harvested by centrifugation at 8,000 rpm
at 4°C, then washed once at 4°C with 0.25% M9 acetate. A
portion of the cells were harvested as reference samples, and the
remaining cells were poured into 0.25% M9 acetate medium
prewarmed to 37°C with a starting OD600 of �0.2. Time-course
samples were collected at specified times by quickly chilling in
ethanol�dry ice bath and harvested by centrifugation at 8,000
rpm at 4°C. All time-course samples were kept in RNAlater
(Qiagen, Valencia, CA) at �80°C for RNA purification at a later
time.

DNA Microarray Experiments. Total RNA of �1 � 109 cells was
purified by hot phenol extraction followed by purification using
the RNeasy midi kit (Qiagen) following the manufacturer’s
instructions. cDNA labeling and hybridization were performed
according to protocols as described (6). DNA microarray slides
containing all E. coli ORFs were made in our laboratory (6), and
the images were scanned by using a Versarray ChipReader
high-resolution (5 �m) scanner (Bio-Rad) at two excitation
wavelengths (532 and 635 nm). Each slide contained two spots
of the same probe, each sample was hybridized to two slides, and
the time-course experiments were replicated up to three times.
The two images scanned with the wavelengths of Cy3 and Cy5
were analyzed by using the image analysis software IMAGENE
(Biodiscovery, Marina Del Rey, CA). The software package
LCDNA, developed in our laboratory (8), was used to assess the
statistical confidence intervals of gene expression. The analysis
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accounts for slide-to-slide and experiment-to-experiment varia-
tions by using both technical and biological repeats. A Markov
chain Monte Carlo simulation was used to determine the pa-
rameters in a Bayesian hierarchical model.

Intracellular cAMP Assay. The samples for intracellular cAMP
measurement were taken and prepared for assay as described
(9). Ten milliliters of E. coli culture was harvested and filtered
through 0.45-�m membrane filters (Millipore) at each time
point. The filtered samples were quickly dipped into 7 ml of
ice-cold 60% ethanol solution and stored at �20°C before assay.
The concentrations of intracellular cAMP were determined with
an enzyme-linked immunoassay (Biotrak cAMP EIA system,
Amersham Biosciences).

NCA. As shown in Fig. 1, NCA takes advantage of the connectivity
information to decompose DNA microarray data to determine
both TFA and the control strength (CS) of each regulatory pair.
The relationship between TFAs and gene expression levels was
approximated by a log-linear model of the type:

Ei�t�
Ei(0)

��
j�1

L �TFAj�t�
TFAj(0)�

CSij

, [1]

where Ei(t) is the gene expression level, TFAj(t), j � 1, . . . , L is
a set of transcriptional regulator activities, and CSij represents
the CS of TF j on gene i. The above equation can be written in
the following matrix form after taking the logarithm

log�Er� � �CS�log�TFAr�, [2]

where the elements Erij(t) � Eij(t)�Eij(0) and TFArkj(t) �
TFAkj(t)�TFAkj(0) are the relative gene expression levels and
TFAs. The rows of [Er] (size: N � M) and [TFAr] (size: L � M)
are the time courses of relative gene expression levels and TFAs,
respectively, and [CS] (size: N � L) is the matrix with elements
CSik. In the above equation, log[Er] is obtained from DNA

microarray data, and both [CS] and [TFA] are unknown vari-
ables to be determined. Several linear decompositions of the
matrix log [Er] have been used in the study of gene expression
array, such as singular value decomposition (2) and independent
component analysis (3). Although these decomposition tech-
niques have strong statistical foundations, their molecular basis
is difficult to pinpoint.

The solution obtained by NCA is based not on any hypothesis
of relationship between the TFAs, but on the structure of [CS],
namely, the connectivity structure of the network linking TFs
and genes. Specifically, such constraints involve, for example,
setting to zero the elements CSij when gene i is not regulated by
TFAj, but can also include constraints on the polarity of the
regulation (induction or repression). We demonstrated (1) that
if the underlying transcriptional network satisfies the following
properties, such decomposition becomes unique up to some
normalization factors:

(i) The connectivity matrix [CS] must have full-column rank.
(ii) When a node in the regulatory layer is removed along with

all of the output nodes connected to it, the resulting network
must be characterized by a connectivity matrix that still has
full-column rank.

(iii) The log [TFAr] matrix must have full row rank. In other
words, each regulatory signal cannot be expressed as a linear
combination of the other regulatory signals. This criterion
requires M 	 L as a necessary but not sufficient condition.

To test whether the given network satisfies the above NCA
criteria, an initial [CS] matrix is constructed by assigning random
numbers to the nonzero entries of the [CS] matrix and fixing the
zero entries based on the network topology. The initial [CS]
matrix must have full-column rank (criterion i). For each TF, by
deleting the corresponding column and rows corresponding to
nonzero elements in that column, the resulting reduced matrix
should still have full-column rank (criterion ii). If not, this TF is
not identifiable with NCA. Criterion iii cannot be tested a priori,
but it demands that the number of time points (M) is greater than
the number of TFs (L). Biological repeats of time points can be
included in the matrix [Er] to increase M. Because of the noise

Fig. 1. (A) A bipartite network illustrating the static relationship between TFs and the genes they control. (B) The quantitative and dynamic TF gene network
reconstructed by applying the NCA method. The activated form of a TF has its own dynamics, making the activity of a TFA a separate quantity from the expression
level of its parent gene. The color of the edges indicates the polarity (red, negative; blue, positive) of the connection, and the thickness indicates the magnitude
of the effect of a TF on each gene. (C) Method for quantitative reconstruction. The connectivity information between TFs and genes (Left) is used to construct
an initial CS matrix, which is tested to verify whether it satisfies the criteria required by NCA. The zeroes in the initial CS matrix are used as constraints when
deconvolving microarray data (Right) to obtain TFAs and CSs with the NCA technique.
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of the data, the resulting TFAr matrix almost always satisfies
criterion iii when M 	 L.

Once the above three criteria are satisfied, we proceed by
minimizing the following objective function:

min�log�Er� � �CS�log�TFAr��2 s.t. �CS� � N0, [3]

where N0 is the topology defined by the network connectivity
pattern. If a TF-gene pair is not linked in the connectivity
diagram, then the corresponding CS value is constrained to zero
during the decomposition. Otherwise, it is optimized through the
decomposition process. The objective function in Eq. 3 is
equivalent to a constrained maximum-likelihood procedure in
the presence of Gaussian noise. Because, in general, multiple
instances of the measurement data are not available, we assess
the variability of our estimates by using a bootstrap procedure
(1). The actual estimation of [TFAr] and [CS] is performed by
using a two-step least-squares algorithm, which exploits the
biconvexity properties of linear decompositions.

The CS values for each TF across all of the genes are
normalized so that the mean absolute values of the nonzero CSs
are equal to the number of controlled genes. After normaliza-
tion, the CS values satisfy the following property:

�
i�1

N

�CSij�

nj
� 1, [4]

where nj is the number of genes regulated by TFj. With this
normalization, the CS values represent the relative CS for the
same regulator on different genes. In addition, after normaliza-
tion, the activity for the jth TF at time k is the average absolute
effect on all of the genes it controls.

TFArjk �

�
i�1

N

�CSij�TFArjk

nj
. [5]

Here, both CSij and TFArjk are normalized values. Because TFA
is always discussed as ratios with respect to the initial reference
state, we simplify the discussion in the following by using TFA
to prepresent TFAr. A Matlab module for NCA analysis is
available at www.seas.ucla.edu�
liaoj.

Results and Discussion
Applicability of NCA to E. coli. We recognize that transcriptional
activities are regulated by a set of DNA-binding TFs, whose
activities are modulated via posttranslational modification or
ligand binding. Therefore, the transcriptome dynamics can be
largely represented by the dynamics of TFAs. In the simplest
case, if a gene is controlled by only one TF, it can be used as a
reporter. However, a large number of genes are controlled by
multiple TFs. Therefore, it is difficult to obtain TF information
from these transcriptome profiles. NCA offers an opportunity to
determine the contribution of each TF to each gene, provided
that the connectivity of TF to the genes is known and satisfies the
NCA criteria. Although the connectivity between transcription
factors and genes in E. coli is incomplete, currently available
information was obtained from RegulonDB (10), which included
120 regulatory proteins and 833 genes. Some corrections were
made according to literature data, and the final connectivity
database used in this work is shown at www.seas.ucla.edu�

liaoj�.

Typically, physiological perturbations impact only a subset of
the TFs, causing the differential expression of a subset of genes.

Given the incomplete connectivity information currently avail-
able for E. coli, we tested whether subnetworks satisfy the NCA
criteria. Thus, a given number of TFs was randomly chosen from
E. coli together with the genes they controlled to form random
subnetworks. The initial CS matrices were constructed by using
the known connectivity information between TF and genes.
These matrices were tested for conformity to the NCA criteria.
Results show that 70% of the TFs in any subnetworks randomly
selected are NCA identifiable (Fig. 2). A similar test for Sac-
charomyces cerevisiae shows that 	95% of TFs in random
subnetworks are NCA identifable (data not shown).

A common problem is caused by occasional cases where the
gene membership of a particular regulon is a subset of another.
Thus, the NCA criterion ii cannot be satisfied, and the TFA of
the subregulon cannot be identified. This situation arises when
a TF is known to regulate only a specific operon. For example,
LacI is known to regulate only the lac operon, whereas the lac
operon is also regulated by CRP. Thus, LacI forms a regulon that
is a subset of CRP. Fortunately, these cases are relatively simple,
and the activity of these TFs can be directly determined through
other means. To circumvent this problem in NCA, a reduced set
of the transcription network should be constructed by deleting
the TF (e.g., LacI) and their regulon membership (lacZYA),
which cause rank deficiency. It is also possible that as the
connectivity information becomes more complete (as in the case
of S. cerevisiae), fewer TFs will form regulons that are subsets of
others.

Gene Expression Profiles During E. coli Carbon Source Transition. To
apply NCA to E. coli, temporal gene expression profiles of E. coli
BW25113 during transition from glucose to acetate as the sole
carbon source was detected by using DNA microarrays. Samples
were taken at 5, 15, 30, and 60 min, and every hour until 6 h after
transition. Each time point was compared against the reference
sample taken immediately before transition.

During this transition, no growth was observed within the first
2–3 h (Fig. 3A). However, transcriptional regulation was highly
active during the first hour with 337 genes significantly up-
regulated at least 2-fold and 416 genes down-regulated at least
2-fold. The genes that are essential for acetate metabolism
include acs, which is responsible for acetate uptake, aceBAK,
which codes for the glyoxylate shunt genes, the TCA cycle genes,
and the gluconeogenic gene, pckA. These genes were all up-
regulated, but at different time scales (Fig. 3B). Within the first
5 min, acs and pckA were induced as the first response to this
carbon source switch. The TCA cycle genes (e.g., sucABCD,
lpdA, gltA, mdh, and icdA) were down-regulated within the first
30 min before they were up-regulated again at 1–2 h. The rapid

Fig. 2. Identifiability of random subnetworks in E. coli. Randomly chosen TFs
and the genes they control are used to construct subnetworks, using the
known connectivity information between TF and genes. These subnetworks
were tested for conformity to the NCA criteria. Results show that the TF
networks randomly selected are �70% identifiable, based on the NCA
method.
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induction of acs was consistent with the literature (11); however,
the initial down-regulation of TCA cycle genes was unexpected.
The glyoxylate shunt genes were induced at �1 h after transition,
before the TCA cycle genes came out of the initial repressed
state at �2 h. Furthermore, an overall down-regulation of the
amino acid (with the exception of cystein) and nucleotide
biosynthesis pathway genes was observed, consistent with the
initial growth arrest upon transitioning from glucose to acetate.

NCA of the Transcriptome Data. Among the genes in the connec-
tivity database (www.seas.ucla.edu�~liaoj), 296 of them were
shown to be perturbed during transition from glucose to acetate
growth. The initial connectivity matrix was constructed by using
random numbers as an initial guess of the nonzero CS values.
This matrix was tested by using the NCA criteria. The final data
set for NCA analysis contained 100 genes and 16 TFs. The data
matrix has 25 time points that included repeated data points.
Thus the dimension of the data matrix was (100 � 25). The data
matrix was decomposed according to Eq. 2, and the resulting
[CS] and [TFA] matrices were normalized according to Eqs. 4
and 5. The TFA for the same time points were then averaged to
obtain the final time courses.

For regulators that require modification, the TFA represents
either a ligand-bound or phosphorylated form of the TF. Among
the regulators, CRP, FadR, IclR, and Cra (FruR) were known
to participate in this carbon source transition. CRP requires the
binding of the signal metabolite, cAMP, for activation. The TFA
profile of CRP represents the time course of the CRP–cAMP

complex. It peaked within the first hour of transition then tapers
off slowly, consistent with the finding that the intracellular
concentration of cAMP is increased in the absence of glucose
(12, 13).

IclR is a repressor of the glyoxylate shunt genes, which are
required for growth in acetate. This regulator is thought to
require an unknown binding partner for its repression activity.
Thus, the TFA of IclR represents the level of the IclR–ligand
complex, which exerts a negative effect on the genes it controls.
According to the NCA results (Fig. 4), the activity of IclR
decreased after transition, and thus the genes it controlled were
derepressed. Similarly, the activity of FadR, a regulator involved
in fatty acid degradation, and an activator of IclR were decreased
initially. Cra has been proposed to participate in carbon source
regulation. In the absence of the suggested effectors, fructose 1
phosphate or fructose 1,6 bisphosphate, it activated ppsA. Its
TFA profile was consistent with the expression profile of ppsA.

An unapparent participant during this transition was ArcA,
which was transiently activated (through phosphorylation) dur-
ing the initial period. The activated ArcA can serve as both a
positive and negative regulator, depending on the specific pro-
moter. ArcA has been shown to be activated during growth arrest
and its activation has been proposed as a means to reduce the
damaging effects of oxygen radical species (14). In accordance
with this theory, our results showed that ArcA was activated
initially because of the reduced need for respiration during
growth arrest in the transition period. As growth resumed, ArcA
activity was reduced to allow the cell to resume aerobic growth.

Fig. 3. (A) Growth curve of E. coli BW25113 after transition from glucose to acetate media. (B) Gene expression profiles of key genes for acetate metabolism.
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Overall, consistent with the reduced need of building blocks
during transition from glucose to acetate, activities of TFs that
were involved in biosynthesis were behaving accordingly. The leu
operon activator, LeuO, was inactivated during the growth
arrest. The aromatic amino acid biosynthesis pathway repressors,
TrpR and TyrR, were activated during this transition. TrpR
binds to its ligand, tryptophan, for activation, whereas TyrR
requires any of the aromatic amino acids for activation depend-
ing on the target. During the growth arrest, there was an
apparent surplus of the aromatic amino acids, thus the two
repressors involved in amino acid biosynthesis were activated to
repress the biosynthetic genes. PurR is the repressor for the
nucleotide biosynthesis genes using hypoxanthine or guanine as
corepressors. It exhibited a sharp peak in activity initially,
indicative of a reduced need for purine biosynthesis during
growth arrest. The initial activation of PurR was slowly allevi-
ated, suggesting that the need for nucleotide biosynthesis in-
creased as growth resumed. One exception to the general
reduction of biosynthesis was indicated by CysB, the activator for
the synthetic genes of cysteine and uptake genes of sulfur
sources. CysB is also known to be involved in glyoxylate assim-
ilation and to be active under catabolite-derepressed conditions
by exerting its effect on adenylate cyclase through influencing
the phosphotransferase system-regulatory apparatus (15).
Therefore the activation of CysB may help the cells to adapt to
the new environmental condition after the carbon source tran-
sition from glucose to acetate.

The global regulatory protein, Lrp, participates in coping with
changes in the nutritional conditions by regulating genes in-
volved in amino acid biosynthesis, transport, and degradation
(16, 17). Lrp exhibits its effect on operons through various modes
of action. Depending on the target operon, Lrp can be activated
with or without the binding of leucine. The TFA of Lrp
represents its overall impact on its membership genes. For
example, as a growth lag was first observed during glucose to
acetate transition, Lrp repressed genes involved in the branched

chain amino acid transport (e.g., livJ and livKHMGF) likely
caused by reduced need.

Verification of TFA by cAMP Measurement. Most of the TFAs are
difficult to measure directly. However, CRP activity can be
deduced from the cAMP level, which can be measured. To verify
the TFA estimates of CRP, we measured the intracellular
concentration of cAMP during the transition. Indeed, the time
course of cAMP (Fig. 5) ratios showed the same trend of CRP
activity, providing evidence in support of the NCA analysis. In
particular, the peak (5 min) to valley (4 h) difference in cAMP
was the same as that of CRP activity. The agreement between the
time course of cAMP and the estimated TFA of CRP is a positive
confirmation to the NCA methodology and the CRP connec-
tivity used in the analysis.

Conclusion
DNA microarray has been successfully used as a tool in the study
of differential gene expression changes in various conditions (6,
18–24). However, without the proper mathematical and statis-

Fig. 4. The dynamics of the TFA for 16 transcriptional regulators during glucose to acetate transition in E. coli. The activities for transcription regulators provide
indications of the levels of their active forms, such as phosphor-ArcA, cAMP–CRP complex, and tryptophan–TrpR complex, which may either repress or activate
transcription. The solid line is the average TFA, and the shaded areas span two standard deviations (these statistics were estimated by using a bootstrap
technique).

Fig. 5. The ratios of the intracellular cAMP concentration relative to the
initial time point during the glucose to acetate transition. The similarity of this
profile to the TFA of CRP helps to confirm the NCA approach.
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tical tools, it is difficult to decipher the complex physiological
responses to these environmental perturbations from these gene
expression studies (25). The recently developed mathematical
method, NCA, was successfully applied to E. coli during carbon
source transition to obtain the TFAs for several important TFs.
The physiological significance of several TFAs was consistent
with known physiology and the TFA profile for CRP was
experimentally validated by the cAMP levels.

The applicability of NCA mainly depends on the availability of
sufficiently accurate TFs binding information. In most organ-
isms, the connectivity information is currently unavailable. How-
ever, for well studied organisms such as E. coli and S. cerevisiae,
significant amounts of connectivity information have been ac-
cumulated and more are being discovered (26–29). In addition,
various computational and experimental methods have been
developed (30–33) to allow the determination of such connec-
tivity information for less-characterized organisms. It is expected

that such data will increase significantly in the near future. If
reasonably accurate connectivity information is available, TFAs
determined by NCA provide additional insight to interpret the
transcriptome data. On the other hand, questionable and in-
complete connectivity information will remain common. Be-
cause NCA derives the TFAs based on multiple genes, it is
relatively insensitive to small errors. However, large amounts of
error in connectivity may lead to TFA profiles that are incon-
sistent with other existing physiological data, and thus provide a
means to check the accuracy of connectivity information.
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