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Abstract

The structures of biochemical pathways are assumed to be determined by evolutionary optimization processes. In
the framework of mathematical models, these structures should be explained by the formulation of optimization
principles. In the present work, the principle of minimal total enzyme concentration at fixed steady state fluxes is
applied to metabolic networks. According to this principle there exists a competition of the reactions for the available
amount of enzymes such that all biological functions are maintained. In states which fulfil these optimization criteria
the enzyme concentrations are distributed in a non-uniform manner among the reactions. This result has conse-
quences for the distribution of flux control. It is shown that the flux control matrix c, the elasticity matrix o, and the
vector e of enzyme concentrations fulfil in optimal states the relations cTe=e and oTe=0. Starting from a
well-balanced distribution of enzymes the minimization of total enzyme concentration leads to a lowering of the SD
of the flux control coefficients. © 1999 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

The structural properties of metabolic systems
can be considered as a result of a long-term
biological evolution. Therefore, one can assume
that these systems have developed towards states
where they fulfil their biological function in an

optimal manner. On this basis one can draw
conclusions about the actual states of metabolic
systems using optimization criteria. Mathemati-
cally, this means the application of extremum
principles to the models of metabolic networks.
The following optimization criteria have been for-
mulated among others: (a) maximization of steady
state fluxes in metabolic networks (Heinrich et al.,
1987; Pettersson, 1993; Heinrich and Klipp, 1996);
(b) maximization of the catalytic efficiencies of
isolated enzyme reactions (Albery and Knowles,
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1976; Cornish-Bowden, 1976; Mavrovouniotis et
al., 1990; Pettersson, 1992; Wilhelm et al., 1994;
Heinrich and Klipp, 1996; Pettersson, 1996; Bish
and Mavrovouniotis, 1998); (c) minimization of
enzyme concentration in unbranched enzymatic
chains (Heinrich and Holzhütter, 1985; Brown,
1991); (d) minimization of intermediate concen-
trations and total osmolarity in biochemical net-
works (Schuster and Heinrich, 1991; Schuster et
al., 1991); (e) improvement of the ATP-yield in
ADP-ATP-converting systems (Heinrich et al.,
1997; Meléndez-Hevia et al., 1997; Stephani and
Heinrich, 1998); (f) economic design of pathways
to fulfil the function of metabolite conversion in a
minimal number of steps (Meléndez-Hevia and
Isidoro, 1985; Meléndez-Hevia et al., 1994).

In this paper we analyze the effects of a mini-
mization of the total enzyme concentration on the
distribution of the individual enzyme concentra-
tions and the consequences for the distribution of
flux control. There are several reasons to assume
that the individual amounts of enzymes within a
cellular system should be regulated such that the
metabolic fluxes necessary for the maintenance of
cell functions can be achieved by low total enzyme
amount. Enzymes are osmotically active sub-
stances. One strategy to achieve osmotic balance
is, therefore, to hold the total amount of enzyme
constrained. Furthermore, enzyme synthesis is
very expensive for the cell, energetically as well as
with respect to the cost of material. It is, there-
fore, reasonable to assume that various pathways
or even individual reactions compete in some
sense for the available resources. Recent investiga-
tions show that an adjustment of cellular enzyme
pattern takes place not only on a long time scale
but already within several hours as a consequence
of environmental changes. DeRisi et al. (1997)
recorded the changes of gene expression in terms
of mRNA levels in Saccharomyces cere6isiae at
changing supply of glucose. Blomberg and
coworkers (Blomberg, 1997; Norbeck and
Blomberg, 1997) investigated the salt-instigated
protein expression of S. cere6isiae during growth
in media of different salinity. To protect against
osmotic stress these cells accumulate glycerol, the
production of which is accompanied by overall
metabolic changes. For example, an enhanced

amount of glycerol 3-phosphate dehydrogenase is
produced and also other enzymes involved in the
glycerol synthesis were induced to a certain de-
gree. Furthermore, an altered expression (decrease
or increase) of glycolytic enzymes was recorded.
These investigations indicate that cellular enzyme
levels are not only optimized at an evolutionary
time scale but can also be rapidly adopted within
hours.

Though it is clear that biological systems can be
optimized with respect to different criteria in the
following the phrase ‘optimal state’ denotes a
state in which the total amount of enzyme is
minimized under maintenance of network func-
tion which is characterized by the steady state
fluxes. This is achieved by proper adjustment of
the individual enzyme concentrations. To assess
the properties of optimal states one has to con-
sider non-optimized reference states with the same
steady state fluxes. In the following we consider as
‘reference state’ a situation where all individual
enzyme concentrations are equal to unity (in suit-
able, but arbitrary units, e.g. mmol l−1).

Evolutionary pressure or short-term adaptation
leading to a special distribution of the available
amount of enzyme will also affect flux control in
metabolic networks. One may expect that opti-
mization will result in characteristic patterns for
flux control coefficients and elasticities. Flux con-
trol coefficients are quantities which express for a
given steady state of the metabolic system the
effect of a small change of a certain reaction rate
on the steady state fluxes. Elasticity coefficients
reflect the immediate change in the rate of a
reaction caused by a change in the concentration
of a metabolite.

In this paper the consequences of the minimiza-
tion of the total enzyme concentration will be
analyzed under the assumption that the reaction
rates are linear functions of the individual enzyme
concentrations. In Section 2, two structurally sim-
ple but important examples are investigated, the
unbranched pathway of arbitrary length and the
branched network consisting of three reactions
connected via one common intermediate. These
examples indicate that there is a special relation
between enzyme concentrations and flux control
coefficients in optimal states. In Section 3, it will
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be shown that this relation holds true for
metabolic systems of arbitrary stoichiometry.

2. Structurally simple systems

2.1. Unbranched pathways

Let us consider an unbranched metabolic path-
way consisting of r enzymatic reactions trans-
forming an initial substrate P1 into a final product
P2 via the intermediates S1, S2, . . . , Sn with n=
r−1. All rates Vi of the individual reactions
should be linearly dependent on the correspond-
ing enzyme concentrations but may depend in a
nonlinear way on the concentrations of the inter-
mediates, that is:

Vi=Ei fi(S1, . . . ., Sn) (1)

Under steady state conditions:

Vi=J (2)

for i=1, . . . ., r the flux J through the chain is a
function of the enzyme concentrations Ei (for an
explicit expression, see below). The optimal en-
zyme concentrations ei=Ei

opt in states of minimal
total amount of enzyme etot=E tot

opt at fixed steady
state flux J=J0 can be determined by the varia-
tional equation:

(

(Ei

! %
r

j=1

Ej+l(J(E1, . . .,Er)−J0)
"

=0 (3)

where l denotes the Lagrange multiplier. From
this equation it follows:

(J
(Ei

= −
1
l

(4)

and

ei

J
� (J
(Ei

�
Ej=ej

= −
1
l

ei

J
(5)

The left hand term in Eq. (5) represents the flux
control coefficient Ciof reaction i over the flux J.
Taking into account that the sum of these coeffi-
cients over all reaction equals unity (summation
theorem of metabolic control analysis) Eq. (5)
yields l= −etot/J and in this way:

(Ci)Ej=ej
=

ei

etot

(6)

In the following we denote the control coefficients
in optimal states by lower case letters such that
ci= (Ci)Ej=ej

. Eq. (6) indicates that minimization
of the total enzyme concentration at fixed steady
state flux leads to a state where the distribution of
flux control coefficients equals the distribution of
the individual enzyme concentrations.

Special distributions for ei and ci result from
Eq. (4) by use of special rate laws. With:

Vi=Ei(Si−1ki−Sik− i) (7)

(S0=P1=const, Sn=P2=const) the equation
for the steady state flux reads:

J=
P1 5

n

i=1

qi−P2

%
n

j=1

1
Ejk− j

5
n

m= j+1

qm

with qi=
ki

k− i

(8)

(Heinrich and Klipp, 1996). Introducing Eq. (8)
into Eq. (4) leads to:

ei=
J0

N

Yi %

n

l=1


Yl, with Yj=
1

k− j

5
n

m= j+1

qm (9)

where N denotes the numerator of Eq. (8).For
calculating J0 we consider a reference state where
a given total concentration of enzymes is dis-
tributed uniformly such that Ei=Etot/n. In this
way one obtains from Eq. (8) and Eq. (9):

ei=
Etot

n


Yi %
n

j=1


Yj

%
n

l=1

Yl

(10)

It is easy to see that this equation implies etot/
Etot51. Introducing Eq. (10) into Eq. (6) yields
for the control coefficients in optimal states:

ci=

Yi

%
n

j=1


Yj

(11)

In the reference state the control coefficients read:

Ci=
Yi

%
n

j=1

Yj

(12)
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To elucidate the effect of optimization on the
distribution of flux control we will consider the
SDs s of the flux control coefficients defined as:

s2=
1
n

%
n

i=1

Ci
2−

�1
n

%
n

i=1

Ci

�2

(13)

Due to the summation theorem the second term
on the right hand side reduces to −1/n2.With
Eqs. (10) and (11) one gets in the optimal state:

(sopt)2=
1
n2Ã
Ã

Ã
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Ä

n %
n
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Yi� %
n
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Yj

�2
−1Ã

Ã

Ã

Â

É

=
1
n2

�Etot

etot

−1
�
(14)

Fig. 1 shows the SDs of the flux control coeffi-
cients in the reference state and in the optimal
state for an unbranched chain of five enzymes in
the special case of identical kinetic properties of
the enzymes (qi=q, k− i=k−). It is seen that the
SD in the optimal case is lower then the one in the
reference state for all q-values.

One may prove that the relation sopt/s ref51
holds true also for the general case of different
kinetic and equilibrium constants (see Appendix
A). This means that optimization leads to a state
where the distribution of control coefficients be-
comes more uniform, i.e. the differences between

the coefficients decrease. In contrast to that the
optimal enzyme concentrations become differenti-
ated compared to the reference state.

It is worth mentioning that the effect of mini-
mization of the total enzyme concentration on the
SD of control coefficients depends on the choice
of the reference state. This can be illustrated
considering the case of minimal SD s2=0 where
all flux control coefficients are equal to 1/n. Using
Eq. (8) it is easy to see that such a situation can
be realized with enzyme concentrations Ei propor-
tional to Yi. Choosing this state as reference state
(instead of Ei=Etot/n), minimization of the total
enzyme concentration leads again to Eq. (10) for
the optimal enzyme concentrations, to Eq. (11)
for the control coefficients in optimal states, and
to Eq. (14) for the corresponding SD. Since etot/
Etot51 one finds (sopt)2] (s ref)2=0, that is, an
increase of the SD of the flux control coefficients
compared to the reference state, in contrast to the
case with equal enzyme concentrations in the ref-
erence state.

The proportionality between enzyme concentra-
tion and flux control coefficients expressed in Eq.
(6) results also from another optimization princi-
ple which is, in some sense, inverse to the consid-
ered one, namely the principle of maximization of
the steady state flux at fixed total amount of
enzymes (Heinrich and Holzhütter, 1985; Heinrich
and Klipp, 1996). This result was confirmed by
Brown (1991). He stated that this proportionality
is valid not only for unbranched chains but for
metabolic pathways of any complexity. In the
following sections we show that such a conclusion
is not correct and that Eq. (6) is only a special
case of a more general relation.

2.2. The branched system

The branched system depicted in Scheme 1 is
governed by the differential equation:

dS
dt

=V1+V2+V3 (15)

Using again linear rate laws which read for the
present system:

Vi=Ei(Piki−Sk− i) (16)

Fig. 1. Standard deviations s of the flux control coefficients
for an unbranched chain of five reaction as functions of the
equilibrium constants with qi=q with k− i=k−. Curve s ref:
reference state; curve sopt: optimal state; curve sopt/s ref: ratio
of SDs.
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Scheme 1.

Ji=

Ei [Piki(Ejk−j+Emk−m)−k−i(EjPjkj+EmPmkm)]
E1k−1+E2k−2+E3k−3

(18)

with i, j, m=1, . . .,3; i" j"m. In this section the
indices of fluxes, enzyme concentrations, etc. run,
as in Eqs. (16) and (18), from 1 to 3, if not stated
otherwise. We denote as reference states the situa-
tions where the three enzymes have the same
concentration Ei=Etot/3. Without loss of general-
ity the concentration units can be choosen in such
a way that in the reference state Ei=1 and Etot=
3. The corresponding reference fluxes are func-
tions of the concentrations Pi of the outer
reactants. We will vary the concentrations of the
outer reactants within a P-simplex defined by the
constraint P1+P2+P3=P. For further details of
the simplex representation see Fig. 2.

Choosing for example the kinetic parameters as
ki=k− i=k one obtains from Eq. (18)

Ji=
Etotk

9
(3Pi−P) (19)

Each flux Ji is positive for Pi\P/3 and negative
elsewhere. This divides the simplex into three
quadrangular regions Qi and three triangular re-
gions Ti where in each case two fluxes have a
different sign than the third one (Fig. 2).

2.2.1. States of minimal total enzyme
concentration

According to Eq. (16) one obtains at given
steady state fluxes Ji for the enzyme concentra-
tions:

Ei=
Ji

Piki−Sk− i

. (20)

States of minimal total enzyme concentrations
may be found by variation of the concentration S
such that:

dEtot

dS
=

d(E1+E2+E3)
dS

= %
3

i=1

Jik− i

(Piki−Sk− i)2=0

(21)

The obtained extremum is a minimum since
d2Etot/dS2\0 which follows from sign(Piki−
Sk− i)=sign(Ji) (see Eq. (16)). Eq. (21) consti-
tutes a fourth-order equation for the

Fig. 2. P-simplex. The concentrations of the outer reactants
are defined by the constraint P1+P2+P3=P. Each corner Pi

is characterized by Pi=P and vanishing values for the other
outer reactant concentrations. The points Oi are defined by
Pi=0 and Pj=P/2 for j" i. For ki=k− i=k each flux Ji is
positive for Pi\P/3, zero at the line Pi=P/3 and negative
elsewhere. This divides the simplex into six regions, Ti and Qi,
where in each case two fluxes have a different sign than the
third one. The signs in the different regions indicate in the
given order the signs of the fluxes J1, J2, and J3. ‘+ ’ means
netto-flux directed from Pi towards S and ‘− ’ means the
opposite direction.

with i=1, . . . ., 3, one obtains for the steady state
concentration of the internal metabolite:

S=
E1P1k1+E2P2k2+E3P3k3

E1k−1+E2k−2+E3k−3

(17)

and for the three steady state fluxes:
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determination of the optimal intermediate concen-
tration s=s(J1, J2, J3). Introducing its solution
into Eq. (20) yields the enzyme concentrations ei

allowing for the minimal total enzyme concentra-
tion etot.

In Fig. 3a and Fig. 4a the optimal concentra-
tion of enzyme E1 and the minimal total enzyme
concentration are depicted in the P-simplex repre-
sentation for ki=k− i=k. Similar representations
for e2 and e3 can be obtained by a cyclic inter-
change of the indices. Fig. 3b and Fig. 4b are the
corresponding density plots. Each point in these

Fig. 4. The minimal total enzyme concentration etot is depicted
in the P-simplex representation (a) and as a density plot (b) for
ki=k− i=k. Each point in these plots represents the solution
of the minimization problem for the corresponding set of
reference steady-state fluxes.

Fig. 3. Optimal concentration e1. (a) The optimal concentra-
tion of enzyme E1 is depicted in the P-simplex representation
for ki=k− i=k. (b) Corresponding density plot. Each point in
these plots represents the solution of the minimization prob-
lem for for the corresponding set of reference steady-state
fluxes. Similar representations for E2and E3 can be obtained
by a cyclic interchange of the indices.

plots represents the solution of the minimization
problem for the corresponding set of reference
steady-state fluxes.

The heights of the surfaces for optimized ei vary
between three levels with ei=0, ei$2/3, and
ei$4/3. At the corner P1 as well as at the point
O1, for example, one obtains:

Ã
Á

Ä

e1

e2

e3

Ã
Â

Å
=Ã
Á

Ä

4/3
2/3
2/3

Ã
Â

Å
(22a)

etot= (8/9)Etot (22b)
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Inspection of Fig. 3A and B together with Fig. 2
shows that ei is, in general, close to the highest
level, if the corresponding flux Ji has the opposite
sign as the other two fluxes. This is the case, for
example, in the region Q1 where J1\0 and
J2, J3B0, and in the region T1 where J1B0 and
J2, J3\0. In the interior of these two regions the
solution (Eq. (22a)) for e1 is also approximately
fulfilled. The fluxes in these two regions represent
different situations. In the first case (region Q1)
one substrate (P1) is transformed into two prod-
ucts (P2,P3), and in the second case (region T1)
two substrates (P2,P3) are transformed into one
product (P1). In both cases that reaction which
has to balance the other two gets the higher
enzyme concentration in the optimal state. Close
to the boundaries of these regions rather sharp
changes in the optimal enzyme concentrations
occur. The concentration e1 is maximal along the
line P2=P3 where J1= (2/3)k(P1−P2), J2=J3=
− (1/3)k(P1−P2), and s= (1/2)(P1+P2) and
where e1 is the same as given in Eq. (22a). The
enzyme concentration e1 is lowest at the line

P1=P/3, where the fluxes are J1=0 and J2= −
J3= (1/2)k(P2−P3). Here, the analytical solution
of Eq. (21) yields s= (1/2)(P2+P3) and the corre-
sponding optimal enzyme concentrations are e1=
0 and e2=e3=1. As expected, no enzyme (e1) is
necessary to maintain a zero net flux J1. Accord-
ingly, the case Pi=P/3 (centre of the simplex)
where all fluxes vanish is characterised by vanish-
ing concentrations of all three enzymes.

The optimal concentration e1 depicted in Fig.
3A and B and similar results for e2 and e3 yield
the minimal total enzyme concentration repre-
sented in Fig. 4A and B. Since ki=k− i=k this
plot is fully symmetrically with respect to an
exchange of the indices of the external metabolites
Pi. The total enzyme concentration varies in the
range 2/3Etot5etot58/9Etot except for the point
Pi=P/3 where e tot=0. It is worth mentioning
that in optimal states the minimal total enzyme
concentration is always lower than in the refer-
ence state, whereas the individual enzyme concen-
trations may be lower or higher than in the
reference state depending on the external metabo-
lite concentrations.

In the general case the equilibrium constants
may deviate from unity. In Fig. 5 optimized con-
centrations e1 are depicted for q1=2, q2=q3=1/
2 as a density plot. This distribution of
equilibrium constants favours thermodynamically
the flux in the direction from P1 to P2 and P3.
Accordingly, the region Q1 with J1\0 and J2,3B
0 in the P-simplex increases compared to the
corresponding region for qi=1 (Fig. 2). As a
consequence, the region Q1 where e1 is higher then
e2 and e3 also extends towards higher values of P2

and P3, whereas the region T1 with raised e1 at
J1B0 and J2,3\0 shrinks. The corresponding
regions for increased e2 and increased e3 also
change their shape and shift towards the line of
P1=0.

In Fig. 6 variations of the optimal enzyme
concentrations with changing equilibrium con-
stants are shown for the case q2=q3=1/q1 at the
point where P1=P and P2=P3=0. Hence, the
second and third reaction degrade metabolite S
irreversibly. For details of these dependencies see
the legend to Fig. 6. Note, that the tendencies at

Fig. 5. Optimal enzyme concentration e1 in the nonsymmetri-
cal case: representation of optimal enzyme concentrations for
equilibrium constants deviating from unity (q1=2, q2=q3=
1/2) in a density plot. The flux in the direction from P1 to P2

and P3 is favoured thermodynamically. Accordingly, the re-
gion Q1 with J1\0 and J2,3B0 in the P-simplex increases
compared to the corresponding region for qi=1 (Fig. 2),
whereas the region T1 shrinks. The corresponding regions T2,
T3, and Q2, Q3 for increased e2 and increased e3 also change
their shape and shift towards the line of P1=0.
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Fig. 6. The dependence of the optimal enzyme concentrations
on the equilibrium constants is shown for q1=1/q2=1/q3 at
the point where P1=P and P2=P3=0. In the case q1�1,
q2,3�1, where the fluxes from P1 towards P2 and P3 are
thermodynamically favoured, e1 tends to its reference value
E1=1 whereas e2 and e3 tend to zero. In the opposite case
(q1�1) e1 tends zero where as e2 and e3 tend to their reference
values. The curves display maxima, for e1 at q1=1+
3/2,
for e2 and e3 at q1=5/2−
6, and for etot at q1=1/4. The
maximum of the latter curve is characterised by etot=Etot,
which means that the reference state is already the optimal
one.

JiCj
m=JjCi

m (25)

with i" j"m. Eq. (24) contains the normalized
elasticity coefficients:

oS
i =

S
Vi

(Vi

(S
= −

S
Vi

Eik− i (26)

which, in the following, we will abbreviate with oi.
Eqs. (23)–(25) represent nine equations for the
nine flux control coefficients which are the ele-
ments of the flux control matrix C. One obtains:

C=I3−
1

o1 J1+o2 J2+o3 J3

Ã
Á

Ä

o1 J1

o2 J1

o3 J1

o1 J2

o2 J2

o3 J2

o1 J3

o2 J3

o3 J3

Ã
Â

Å
(27)

where I3 denotes the 3×3- identity matrix. Using
Eq. (26) we can rewrite the flux control matrix C
as:

C=I3−
1

E1k−1+E2k−2+E3k−3

Ã
Ã

Ã

Ã

Ã

Á

Ä

E1k−1

J1

J2

E2k−2

J1

J3

E3k−3

J2

J1

E1k−1

E2k−2

J2

J3

E3k−3

J3

J1

E1k−1

J3

J2

E2k−2

E3k−3

Ã
Ã

Ã

Ã

Ã

Â

Å

(28)

2.2.2.1. Reference states. Eq. (28) indicates that
the control coefficients Ci

i of all reactions on their
own fluxes are independent of the flux distribution
and in this way also independent of the concen-
trations of the external metabolites. Since Ei=
Etot/3 it follows that Ci

i=1−k− i/(k−1+
k−2+k−3). In the special case k− i=k one finds
Ci

i=2/3. The coefficients Cj
i for i" j depend on

the flux ratios and may be positive or negative. In
particular, one finds that Cj

i=0 if Jj=0 and that
they tend towards infinity for Ji�0, where the
sign depends on the signs of the fluxes such that
Cj

i\0 if sign(Ji)"sign(Jj) and Cj
iB0 if

sign(Ji)=sign(Jj) (Fig. 7).
At corner P1 as well as at the point O1 the

matrix of control coefficients reads for ki=k− i=
k :

low and high q1 resemble the situation in the
unbranched chain, where in the irreversible case
only the reactions at the very beginning of the
pathway are characterized by high enzyme con-
centration in optimal states.

2.2.2. Flux control coefficients in the reference
state and in the optimal state

The flux control coefficients Cj
i of reactions j

over the fluxes Ji for the branched system depicted
in Scheme 1 can be calculated using the summa-
tion theorem of metabolic control analysis:

%
3

j=1

Cj
i=1 (23)

the connectivity theorem:

%
3

j=1

Cj
ioS

j =0 (24)

and the three branch-point relationships (Fell and
Sauro, 1985), which read for the present system:
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C=Ã
Á

Ä

2/3
2/3
2/3

1/6
2/3

−1/3

1/6
−1/3

2/3
Ã
Â

Å
. (29)

The control matrices for the points P2, P3 and O2,
O3 follow from Eq. (29) by appropriate inter-
change of the indices.

2.2.2.2. Optimal states. Due to the changes of the
enzyme concentrations the flux control coeffi-
cients c j

i in optimal states will deviate from their
reference values. For ki=k− i=k one obtains
from Eqs. (22a) and (28) at the corner P1 as well
as at the point O1:

c=Ã
Á

Ä

1/2
1/2
1/2

1/4
3/4

−1/4

1/4
−1/4

3/4
Ã
Â

Å
(30)

Fig. 8. Flux control coefficients in the optimal state. (a) The
control coefficient c1

1 in P-simplex representation for k9 i=k.
Values at the corners:1/2(P1) and 3/4(P2,3). In the regions Q1

and T1, where e1$ (4/3)E1, the coefficient c1
1 exhibits de-

creased values compared to the reference values (c1
1$1/

2, C1
1$2/3). In the other regions (T2,3, Q2,3) with e1BE1 the

coefficient c1
1 is increased. These regions regions contain the

line P1=1/3 where J1=0. Approaching this line the concen-
tration e1 vanishes, while the control coefficient tends to unity.
(b) The control coefficient c2

1. It has the same signs, nulls and
singularities in the regions of the P-simplex as in the reference
state. The values at the corners are 1/4(P1), 1/2(P2) and
−1/4(P3) (compare Fig. 7 for reference values). The other
control coefficients in optimal states can be obtained by appro-
priate interchange of indices.

Fig. 7. Flux control coefficients in the reference state. The
control coefficient C2

1 is depicted in the P-simplex representa-
tion for ki=k− i=k. C2

1 is zero for J2=0 and tends to infinity
for J1�0 (see Eq. (26)). In the various regions (T, Q) the sign
of the control coefficient depends on the sign of the corre-
sponding fluxes: sign (Cj

i)=sign (−Jj/Ji). In the corners C2
1

assumes the values 1/6(P1), 2/3(P2), and −1/3(P3), resp. The
corresponding representations for the other control coefficients
Cj

i, i" j can be obtained by appropriate interchange of indices.
The values of the control coefficients Ci

i are independent of the
reactant concentrations in the reference state (=2/3 for the
choosen kinetic parameters) and, therefore, are not repre-
sented.

and corresponding equations at the other points
Pi and Oi (i"1). Fig. 8a shows the flux control
coefficient c1

1 which is obtained by introducing the
optimal enzyme concentrations into Eq. (28). In
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the region Q1 as well as in the region T1 charac-
terized by increased concentration e1 (e1$4/3)
the coefficient c1

1 is decreased compared to the
reference value. In the other regions of the P-sim-
plex where the optimal concentration e1 is lower
than in the reference state the coefficient c1

1 is
increased. These regions contain the line P1=1/3
where J1=0. Approaching this line the concen-
tration e1 vanishes, while the control coefficient
tends to unity.

The control coefficient c2
1 has in regions of the

P-simplex the same signs as in the reference state
(Fig. 8B). It becomes also zero if J2=0, i.e. for
P2=1/3 where e2=0, and it has a singularity for
J1=0. On the corners it assumes the values c2

1=
1/4\C2

1=1/6 (P1) and c2
1=1/2BC2

1=2/3 (P2)
and c2

1= −1/4\C2
1= −1/3 (P3). The other

control coefficients in optimal states can be ob-
tained by appropriate interchange of indices.

2.2.3. General conclusions

2.2.3.1. Standard de6iations. It may be questioned
which general conclusions concerning the change
of the control coefficients due to minimization of
total enzyme concentration can be drawn. In the
previous section we have considered the SD of
the control coefficients in the optimal compared
to the reference state for an unbranched chain. A
similar consideration can be made for the
branched system. Using for example the control
matrices given in Eqs. (29) and (30) one obtains
for the ratio of the SDs of all control coefficients
for the corners Pi and the points Oi :

sopt

s ref =

3
2
B1 (31)

A general equation for the ratio of the SDs of all
control coefficients of the branched system reads:

sopt

s ref =
(k−1+k−2+k−3)

(e1k−1+e2k−2+e3k−3)D�e1k−1

J1

�2

+
�e2k−2

J2

�2

+
�e3k−3

J3

�2

�k−1

J1

�2

+
�k−2

J2

�2

+
�k−3

J3

�2

. (32)

For ki=k− i=k numerical calculations show
that this ratio is always smaller than or equal to

3/2. The fact that this ratio is smaller than
unity gives a further support to the hypothesis
that the optimization of the enzyme concentra-
tions leads to states where control coefficients are
distributed more uniformly than in the reference
state.

2.2.3.2. Relations between control coefficients and
enzyme concentrations in optimal states. In the
optimized state Eq. (26) can be re-arranged to
give:

ei= −
o i

optJi

sk− i

(33)

The condition (Eq. (21)) of minimized total en-
zyme concentration can be rewritten under con-
sideration of Eq. (20) to give:

%
3

i=1

e i
2k− i

Ji

=0 (34)

and with the use of Eq. (33) it follows:

%
3

i=1

o i
optei=0 (35)

Hence, in optimized states we have a relation
between the elasticities and the enzyme concen-
trations which not necessarily holds in non-opti-
mized states.

Eq. (35) may be used to derive a simple rela-
tion between the control coefficients c i

jand the
optimal enzyme concentrations which is indepen-
dent of the elasticties. Introducing o i

opt into Eq.
(27) yields c i

j. Taking into consideration Eqs. (28)
and (35), one derives:

%
3

k=1

c i
kek=ei (36)

The validity of this relation can be easily checked
for special cases, for example, by introducing
the enzyme concentrations from Eq. (22a) and
the control coefficients from Eq. (30). Using in-
stead of ei the concentrations Ei=1 and for the
control coefficients the values from Eq. (29) one
verifies that Eq. (36) is not valid for the reference
state.
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3. The general case

We consider a metabolic system consisting of r
reactions and n metabolites. Again we assume
that each reaction rate Vi is linearly related to the
enzyme concentration Ei (and only to Ei) as given
in Eq. (1). No restrictions are made with respect
to the topology of the network except that, for
sake of simplicity, conservation relations for
metabolites are excluded (for extensions to sys-
tems with conservation relations see below). The
dynamics of the system is described by

dS
dt

=NV (37)

where V= (V1,V2, . . .,Vr)T denotes the vector of
reaction rates, S= (S1,S2, . . .,Sn)T the vector of
metabolite concentrations, and N the stoichiomet-
ric matrix. Under steady-state conditions the
equation system:

NV(S,E)=0 (38)

describes in an implicit manner the dependence
S=S(E) of the metabolite concentrations on the
enzyme concentrations E= (E1,E2, . . . ,Er)T. Us-
ing these functions the steady state fluxes J=
(J1,J2, . . .,Jr)T may be expressed as
J=V(S(E),E).

The control coefficients may be obtained by
implicit differentiation of Eq. (38) with respect to
the enzyme concentrations:

N
(V
(S
(S
(E

+N
(V
(E

=0 (39)

By taking into account:

(J
(E

=
(V
(E

+
(V
(S
(S
(E

(40)

one obtains:

(J
(E

=
�

Ir−
(V
(S

�
N
(V
(S

�−1

N
�(V
(E

(41)

Ir denotes the r×r identity matrix. The scaled
flux control coefficients:

Cj
i=

Jj

Ji

(Ji/(Ej

(Vj/(Ej

(42)

are obtained from Eq. (41) and can be expressed
in matrix form as follows:

C=Ir− (dgJ)−1(V
(S

�
N
(V
(S

�−1

N(dgJ) (43)

(dgJ) denotes a square matrix containing in the
main diagonal the elements of the vector J. [For
more details of the derivation of control coeffi-
cients see Heinrich and Schuster (1996)]. In the
following we have to consider the transpose CTof
the flux control matrix C which reads:

CT=Ir− (dgJ)NT��N
(V
(S

�−1nT�(V
(S

�T

(dgJ)−1

(44)

As in the previous sections we compare systems
which are characterized by the same steady state
fluxes, but have different distributions of enzyme
concentrations. In particular we are interested in
states were the fluxes may be produced by a
minimal amount of total enzyme concentration.
Let us compare first all states which are character-
ized by the same reaction rates

Vi=Vi
0 (45)

for i=1,. . ., r. We assume that the vector V0

fulfils the steady state relation NV0=0 such that
V0=J. Fixation of the fluxes leads by virtue of
Eq. (1) to a relation between the enzyme concen-
trations and the metabolite concentrations such
that:

Ei=Ei(S1,S2,. . . ,Sn)=
Vi

0

fi

(46)

Combining this equation with the principle of
minimal total enzyme concentration:

Etot= %
r

i=1

Ei�min (47)

leads to the variational equation:

(Etot

(Sj

= − %
r

i=1

Vi
0

f i
2

(fi

(Sj

=0 (48)

which determines the metabolite concentrations sj

in the optimal state. Since fi(s1, s2,. . . ,sn)=Vi
0/ei

(compare Eq. (46)) it follows:



E. Klipp, R. Heinrich / BioSystems 54 (1999) 1–1412

%
r

i=1

ei

Vi
0

(Vi

(Sj

)
Sj=sj

=0 (49)

This relation can be rewritten in matrix form as:�(V
(S

�T

(dgJ)−1e=0 (50)

where the derivatives have to be taken at the
concentrations in the optimal state. Postmultipli-
cation of Eq. (44) with the vector e containing the
optimized enzyme concentrations leads by virtue
of Eq. (50) to:

cTe=e (51)

Eq. (51) expresses the functional relation between
enzyme concentrations and flux control coeffi-
cients in states of minimal total enzyme concen-
tration. It represents the general form of Eq. (36)
for enzymatic networks.

Premultiplication of Eq. (50) with the diagonal
matrix containing the optimal intermediate con-
centrations, (dgs), yields:

oTe=0 (52)

where o= (dgJ)−1((V/(S)�S=s(dgs) denotes the
matrix of elasticity coefficients in optimal states.

It is easy to see that Eqs. (51) and (52) hold
true also for systems which contain conservation
relations. In this case Eq. (44) for the transpose of
the matrix of control coefficients is modified by a
link matrix L such that the term ((V/(S)T(dgJ)−1

remains unaffected (Reder, 1988). Since the valid-
ity of Eq. (50) does not depend on the existence of
conservation relations Eqs. (51) and (52) remain
valid.

4. Discussion

In the present paper we have shown that mini-
mization of the total enzyme concentration in
metabolic networks at fixed steady state fluxes
lead generally to states where the enzyme concen-
trations differ from those in a reference state.
Starting from an even distribution some enzyme
concentrations increase and others decrease dur-
ing optimization whereas the total enzyme con-
centration decreases. The optimal individual
concentrations are, therefore, better adapted to

the functional requirements of the network. This
differentiation of enzyme concentrations can be
viewed as a competition for the limited resources
for the synthesis of enzymes within cells. For
example, in the case of an unbranched enzymatic
chain those enzymes which have high control
coefficients in the reference state should be ex-
pressed in higher concentrations in the optimal
state, while the concentrations of the enzymes
with lower control coefficients will decrease. A
similar result is obtained for the branched
pathway.

Resulting from changes in the enzyme concen-
trations the distribution of flux control coeffi-
cients in states of minimal total enzyme
concentration will deviate from the reference dis-
tribution. The flux control coefficients of those
enzymes with increased concentrations will de-
crease during optimization. In the case of an
unbranched chain one arrives eventually at a state
where the enzyme concentrations and the flux
control coefficients show the same distribution. At
first sight it may be surprising that enzymes with
high concentrations, which implies a high rate of
their reactions, exert high flux control, although
fast steps are usually considered to have low flux
control. Our analysis demonstrates once more
that high flux control is not only related to the
rate of the enzyme but also to its location in the
chain.

For branched networks as studied in Section
2.2 there is in optimal states no longer a propor-
tionality of concentrations of certain enzyme and
its flux control coefficients. Instead, one arrives at
the more complex but also linear Eq. (36) which
relate all control coefficients of a certain enzyme
Ei to the concentrations of all enzymes. Rewriting
Eq. (36) in matrix form yields Eq. (51). This
equation is shown to be of general validity for all
metabolic networks provided that the enzyme
concentrations enter the rate equations in a linear
manner. The proportionality of enzyme concen-
trations and flux control coefficients found for the
unbranched chain is a special case of this general
relation. According to Eq. (51) the vector of the
optimal enzyme concentrations can be viewed as
an eigenvector of the transpose of the flux control
matrix to the eigenvalue 1. In that respect this
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relation resembles the summation theorem Ck=k,
where k denotes any vector of the nullspace of the
stoichiometric matrix (Reder, 1988; Heinrich and
Schuster, 1996). The latter equation indicates that k
is an eigenvector of C to the eigenvalue 1.

Minimization of total enzyme concentration may
contribute to a more uniform distribution of the
flux control among the enzymes. For the two
structurally simple systems considered this ten-
dency is expressed by a lowering of the SDs of these
coefficients compared to a reference state with
non-differentiated values of enzyme concentra-
tions. This effect can be a part of an answer to the
question raised by Mazat et al. (1996): ‘Why are
most flux control coefficients so small?’, at least for
unbranched chains where all flux control coeffi-
cients are positive and their sum is constrained to
unity. Whether or not the SD is decreased during
optimization depends on the choice of the reference
state as demonstrated in Section 2.1.

As shown in Section 3 minimization of the total
enzyme concentration leads not only to a special
relation between control coefficients and enzyme
concentrations (Eq. (51)) but also to a special
relation between elasticity coefficients and enzyme
concentrations (Eq. (52)). It is worth mentioning
that there is a direct relation between these two
equations. Eq. (52) results from Eq. (51) if the latter
equation is premultiplied by the transpose of the
elasticity matrix and by taking into account the
connectivity theorem in the form oTCT=0 which is
fulfilled also for the optimal case.

In the case that the system does not contain
conservation relations the optimal enzyme concen-
trations for a system with r reactions and n metabo-
lites are determined by n steady state conditions for
the metabolite concentrations, r−n constraints for
the independent steady state fluxes and n conditions
for the elasticities given Eq. (52). The latter equa-
tion results from the minimization of the total
enzyme concentration by variation of the metabo-
lite concentrations which are the only quantities
which may be changed at fixed fluxes and unknown
enzyme concentrations. This procedure for deter-
mining ei may fail in the case that the system
contains irreversible reactions. The reason is that
some metabolite concentrations drop out from Eq.
(48) and remain undetermined. Minimal total en-

zyme concentrations may then be obtained by
vanishing values of the individual enzyme concen-
trations and the flux constraints are fulfilled by
infinite values of the metabolite concentrations.
Unique solutions could be found by introducing
upper limits for the metabolite concentrations, for
example due to osmotic constraints.
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Appendix A. Proof for (s2)ref] (s2)opt for an
unbranched chain

With the notations xi=
Yi assertion (s2)ref]
(s2)opt holds true if:�%

i

x i
2�3

5
�%

i

x i
4��%

j

xj
�2

(A1)

for xi]0. The validity Eq. (A1) may be proved as
follows. One derives easily:

A=
�%

i

x i
2�3

=%
i

x i
6+3 %

i" j

x i
4xj

2+ %
i" j"k

xi
2xj

2xk
2,

(A2)

and:

B=
�%

i

x i
4��%

j

xj

�2

=%
i

x i
6+ %

i" j

x i
4xj

2+2 %
i" j

x i
5xj

+ %
i" j"k

xi
4xjxk, (A3)

and in this way:

B−A=2 %
i" j

(xi
5xj−xi

4xj
2)

¿¹¹¹¹Ë¹¹¹¹À
T 1

+ %
i" j"k

(xi
4xjxk−xi

2xj
2xk

2)

¿¹¹¹¹¹¹Ë¹¹¹¹¹¹À

. (A4)

T 2

For the first sum T1 to be nonnegative it is sufficient
to show that the individual terms:

T1(i, j)=xi
5xj−xi

4xj
2+xj

5xi−xj
4xi

2 (A5)

are nonnegative. Since:
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T1(i, j)=xixj(xi
2+xixj+xj

2)(xi−xj)2 (A6)

one obtains T1(i, j)]0 and, therefore, T1]0.For
the sum T2 to be nonnegative it is sufficient to
show that the individual terms:

T2(i, j,k)=xi
4xjxk+xj

4xixk+xk
4xixj−3xi

2xj
2xk

2

(A7)

are nonnegative. One obtains:

T2(i, j,k)=xixjxk(xi
3+xj

3+xk
3−3xixjxk) (A8)

Without loss of generality one may assume that
xi5xj,xk such that xj−xi=d1]0 and xk−xi=
d2]0. In this way one obtains:

T2(i, j, k)=xixjxk [d1
3+d2

3+3xi(d1
2+d2

2−d1d2)]

]xixjxk(d1
3+d2

3+3xi(d1−d2)2) (A9)

such that T2(i, j,k)]0 and, therefore, T2]0.
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