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A basic challenge in systems biology is to understand the dynam-
ical behavior of gene regulation networks. Current approaches aim
at determining the network structure based on genomic-scale data.
However, the network connectivity alone is not sufficient to define
its dynamics; one needs to also specify the kinetic parameters for
the regulation reactions. Here, we ask whether effective kinetic
parameters can be assigned to a transcriptional network based on
expression data. We present a combined experimental and theo-
retical approach based on accurate high temporal-resolution mea-
surement of promoter activities from living cells by using green
fluorescent protein (GFP) reporter plasmids. We present algorithms
that use these data to assign effective kinetic parameters within a
mathematical model of the network. To demonstrate this, we
employ a well defined network, the SOS DNA repair system of
Escherichia coli. We find a strikingly detailed temporal program of
expression that correlates with the functional role of the SOS
genes and is driven by a hierarchy of effective kinetic parameter
strengths for the various promoters. The calculated parameters can
be used to determine the kinetics of all SOS genes given the
expression profile of just one representative, allowing a significant
reduction in complexity. The concentration profile of the master
SOS transcriptional repressor can be calculated, demonstrating
that relative protein levels may be determined from purely tran-
scriptional data. This finding opens the possibility of assigning
kinetic parameters to transcriptional networks on a genomic scale.

There is much interest in understanding the design principles
underlying the structure and dynamics of gene regulation

networks (1–10, 36). Determining the dynamic behavior of these
systems requires specifying not only the network connectivity,
but also the kinetic parameters for the various regulation
reactions. Standard biochemical methods of measuring these
kinetic parameters are usually done outside of the cellular
context and cannot be easily scaled up to a genomic level. It
would therefore be valuable to develop methods to assign
effective kinetic parameters to transcriptional networks based on
in vivo measurements. Here we present an approach for deter-
mining the effective kinetic parameters of a transcriptional
network based on accurate promoter activity measurements and
analysis algorithms (Fig. 1).

We developed a system for real-time monitoring of the
transcriptional activity of operons by means of low-copy reporter
plasmids (10) in which a promoter controls green fluorescent
protein (GFP) (11). In each plasmid a different promoter
controls the transcription rate of the same reporter gene, gfp, and
thus rate of transcript production from the promoter is propor-
tional to the rate of GFP accumulation. By continuous mea-
surements from living cells grown in a multiwell plate fluorim-
eter, high-resolution time courses of the promoter strength and
cell density are obtained. With this method, temporal resolution
of minutes can be achieved. This process complements, at higher
accuracy, the genomic-scale perspective given by DNA microar-
rays (12). In a previous study, we demonstrated that this ap-
proach can be used to determine the order of genes in an

assembly pathway (10). Here, we extend it by presenting analysis
algorithms that use accurate expression data to assign kinetic
parameters that can be incorporated into a mathematical model
of the dynamics.

We apply this method to a well characterized transcriptional
network, the SOS DNA repair system in Escherichia coli. The
SOS system includes about 30 operons regulated at the tran-
scriptional level (12–16). A master repressor (LexA) binds sites
in the promoter regions of these operons (16, 17). One of the
SOS proteins, RecA, acts as a sensor of DNA damage: by binding
to single-stranded DNA it becomes activated and mediates LexA
autocleavage. The drop in LexA levels causes the de-repression
of the SOS genes (Fig. 2). Once damage has been repaired or
bypassed, the level of activated RecA drops, LexA accumulates
and represses the SOS operons, and the cells return to their
original state.

We demonstrate that effective kinetic parameters can be used
to detect SOS genes with additional regulation, capture the
temporal transcriptional program, and calculate the concentra-
tion profile of the regulatory protein.

Methods
Plasmids and Strains. Promoter regions were amplified from
MG1655 genomic DNA by using PCR and the following start
and end coordinates for the primers taken from the sequenced
E. coli genome (18): uvrA (4271368–4271753), uvrD (3995429–
3995664), lexA (4254491–4254751), recA (2821707–2821893),
ruvA (1943919–1944201), polB (65704–65932), umuD (1229552–
1230069), uvrY (1993282–1993900), and lacZ (365438–365669).
Each amplified region includes the entire region between ORFs
with an additional 50–150 bp into each of the flanking ORFs.
The promoter regions were cloned by using XhoI and BamHI
sites upstream of a promoterless GFPmut3 gene in a low copy
pSC101 origin plasmid as described (10). The plasmids were
transformed into E. coli strain AB1157 [argE3, his4, leuB6,
proA2, thr1, ara14, galK2, lacY1, mtl1, xyl5, thi1, tsx33, rpsL31, and
supE44] (24).

Culture and Measurements. Cultures of strain AB1157 (1 ml)
inoculated from glycerol frozen stocks were grown for 16 h in LB
medium with kanamycin (25 �g�ml) at 37°C with shaking at 250
rpm. The cultures were diluted 1:100 into defined medium (24)
[M9 supplemented with thiamine (10 �g�ml), glucose (2 mg�
ml), MgSO4 (1 mM), MgCl2 (0.1 mM), thymine (20 �g�ml), each
of the 20 aa except tryptophan (50 �g�ml) � 25 �g�ml kana-
mycin], at a final volume of 100 �l per well in a flat-bottom
96-well plate (Sarstedt). The cultures were covered with an
adhesive pad to prevent evaporation and grown in a Wallac
Victor2 multiwell f luorimeter at 37°C, set with an automatically
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repeating protocol of shaking (2 mm orbital, normal speed, 30
sec, 3 min delay). When the cultures reached midexponential
growth (OD600 � 0.03) they were irradiated with UV light at 254
nm with a low-pressure mercury germicidal lamp at levels of 5
or 20 Jm�2. After addition of 150 �l mineral oil (Sigma M-3516)
per well (to prevent evaporation) the plate was returned to the
fluorimeter with a second repeated protocol that included
shaking (2 mm orbital, normal speed, 30 sec), absorbance (OD)
measurements (600-nm filter, 1 sec), and fluorescence readings
(filters 485 nm, 535 nm, 0.5 sec, CW lamp energy setting 10,000).
Time between repeated measurements was 3 min. Background
fluorescence of cells bearing a promoterless GFP vector was

subtracted. Growth rate was similar to the promoterless GFP
reporter strain.

The present results were obtained with kinetics measurements
for two cell cycles after DNA irradiation. In experiments that
tracked the promoter activity for longer times, we found an
unexpected second peak of promoter activity (not shown), which
occurs after about 21⁄2 cell cycles. This peak includes only a subset
of the SOS promoters and thus is probably not explained only by
a second minimum in LexA levels. It does not appear in operons
unrelated to the SOS system and is thus unlikely to result from
global changes in transcription. The second peak may represent
the influence of an additional, uncharacterized transcription
factor.

The Influence of the UV Irradiation on Plasmid Copy Number. Plasmids
were extracted by using a miniprep kit (Qiagen, Chatsworth, CA)
from an irradiated culture (2 h after a dose of UV � 50 Jm�2)
and an unirradiated control culture. The plasmids were trans-
formed into RP437 CaCl2 heat-shock competent bacteria. One
hundred microliters from the transformation reaction was plated
on LB � 25 �g�ml kanamycin. Both irradiated and control
cultures produced the same number of colonies (within 5%
error), suggesting that the plasmid copy number is not influ-
enced by UV irradiation.

Parametrization Algorithm I: Trial Function. The present study deals
with a simple network architecture, where all operons are under
negative control by a single repressor. This process is modeled by
using a simple binding of the repressor to a regulatory DNA site
in each operon, resulting in a Michaelis–Menten form (Eq. 2). In
the case where the regulator is an activator, and not a repressor,
the appropriate trial function would be:

Xij�t� �
�iÂj�t��k̂i

1 � Âj�t��k̂i
.

Fig. 1. Present approach for assigning effective kinetic parameters to E. coli transcription regulation networks. Transcriptional regulation networks are usually
represented by arrow diagrams, where the arrows represent interactions between transcription factors and DNA regulatory sites. The present approach aims
to assign kinetic parameters (numbers on the arrows) that capture the dynamics of the network within a quantitative mathematical model, as well as the
transcription factor activity profile A(t).

Fig. 2. The bacterial SOS DNA repair system (35). DNA damage is sensed by
RecA, which induces autocleavage of the repressor LexA. LexA binds to the
promoters of the SOS operons, including its own promoter and that of RecA.
This study attempts to assign effective parameters (�i and ki) to the arrows
representing transcriptional regulation of the various operons. ssDNA, single-
stranded DNA.
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This case could be described by the present use of Eq. 2 by using
the transformations:

Â�t� � 1�A�t� and k̂i � 1�ki.

Parameterization Algorithm II: Data Preprocessing. The raw GFP
and OD signals were smoothed by using a hybrid Gaussian-
median filter with a window size of five measurements (19).
Promoter activity is given by Eq. 1, Xi(t) � [dGi(t)�dt]�ODi(t).
The activity signal was then smoothed by a polynomial fit (sixth
order) to log[Xi(t)]. This smoothing procedure captures the
dynamics well, while removing the noise inherent in the differ-
entiation of noisy signals. Finally, the data for all experiments
were concatenated and normalized by the maximal activity for
each operon.

Parametrization Algorithm III: Parameter Determination. To deter-
mine the parameters in Eq. 2 based on experimental data, we
first transformed it to a bilinear form by using 1�Xi(t) � ui(t) �
ai � A(t) � bi, where ai � 1��i ki, bi � 1��i. In this bilinear form,
the matrix Xi(t), which has N � M elements, for N genes and M
time points, was modeled by two vectors ai and bi of size N, and
one vector A(t) of size M, for a total of 2*N � M variables. The
standard method of least mean squares solution for such bilinear
problems uses singular value decomposition (SVD) (20, 21).
First the mean over i of ui(t) was removed ui(t) � ui(t) �
�ui(t)�. A(t) is the SVD eigenvector with the largest eigenvalue
of the matrix

J�t, t	� � 
iui�t��ui�t	�.

The results for A(t) were normalized to fit the constraints A(t �
0) � 1 and min A(t) � 0. Data where A(t) reaches 0 are obtained
at high UV doses (�50 Jm�2). Alternatively for the purpose of
normalizing A(t), points with A � 0 and Xi � � can be added to
the data during analysis. A second round of optimization was
then performed for �i and ki by using a nonlinear least mean
squares solver (lsqnonlin, MATLAB 5.3, Mathworks, Natick, MA)
to minimize (Xmeasured � Xpredicted)2.

Parametrization Algorithm IV: Error Evaluation. The quality of the
model in describing the data is given by the mean error for each
promoter

Ei �
1
T �

t � 1

T �X it
measured � Xit

predicted�
X it

measured .

The error in the estimate for the parameters �i and ki was
determined by using a standard graphic method (22). Briefly, the
form 1�Xi(t) � 1��i � A(t)�(�i ki) was plotted vs. A(t). From
the maximal and minimal slopes of the resulting graphs, the error
for 1�(�i ki) were determined. From the maximal and minimal
intersections of the graph with the y axis, the errors in 1��i were
determined.

Parametrization Algorithm V: Additional Trial Function. An extension
of the model to the case of cooperative binding would be

Xij�t� �
�i

1 � �Aj�t��ki�
Hi .

This function can capture different effective Hill coefficient Hi
for each operon. This form also captures the possibility that a
regulator is a repressor for some genes and an activator for
others, where Hi � 0 corresponds to repression and Hi � 0 to
activation. In principle, it should be evident from the data
whether different operons are regulated with different signs by

Fig. 3. (a) Fluorescence of SOS reporter strains as a function of time after UV
irradiation. (b) SOS Promoter activity, rate of GFP production per OD unit. E.
coli strain AB1157 with SOS reporter plasmids was grown in 96-well plates at
37°C in a multiwell fluorimeter; a UV dose of 5 Jm�2 was given at midexpo-
nential growth (t � 0). (c) Unsmoothed GFP fluorescence (background sub-
tracted) for repeat experiments performed on different days. Each point
represents one time point, for a total of 99 time points per operon for eight
operons. A perfect repeat would be on the x � y diagonal; also shown are
parallel diagonal lines representing 10% errors. The mean error is 10.4%. UV �
5 Jm�2.
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the same regulator, because they will tend to have anticorre-
lated profiles. The present good comparison between mea-
sured LexA levels and those calculated from an Hi � 1 trial
function suggest that there may be no significant cooperativity
in the repressor action (23).

Results
Promoter Activity Profiles for the SOS System. We constructed
GFP reporter strains for eight of the SOS operons. The GFP
used in this study becomes f luorescent within minutes after
transcription (10) and its degradation rate is negligible. The
time-dependent experimental signal is smooth enough to be
differentiated, yielding a direct measure of the promoter
activity (rate of mRNA synthesis). The activity of promoter i,
Xi, is proportional to the number of GFP molecules produced
per unit time per cell,

Xi�t� � �dGi�t��dt��ODi�t�, [1]

where Gi(t) is GFP fluorescence from the corresponding re-
porter strain culture and ODi(t) is the optical density.

All of the SOS operons were activated by UV irradiation (Fig.
3 a and b). The time scale for UV induction of the promoters
(rise time of 7 min) is in agreement with a six time-point DNA
microarray experiment (12). After about half a cell cycle (20
min) the promoter activities begin to decrease. This decrease
corresponds to the repair of damaged DNA and other adapta-
tion mechanisms (24). The mean reproducibility error between
repeat experiments performed on different days is about 10%
(Fig. 3c).

Assigning Effective Kinetic Parameters. The SOS system has a
‘‘single input module’’ architecture (25) where a single transcrip-
tion factor controls multiple output operons, all with the same
regulation sign (repression or activation), and with no additional
inputs from other transcription factors (Fig. 2). This is a basic
recurring architecture in transcriptional networks (26) and char-
acterizes more than 20 different gene systems in E. coli (25). We
use an optimization algorithm to parameterize such gene sys-
tems, by assigning effective kinetic parameters based on time-
course data. We use a simple Michaelis–Menten model for the
kinetics:

Xij�t� � �i��1 � Aj�t��ki�, [2]

where Xij(t) is the activity of promoter i in experiment j, Aj(t) is
the effective repressor concentration in experiment j, �i is the
production rate of the unrepressed promoter, and ki is the

effective affinity of the repressor (concentration at half maximal
repression). Each ki parameter represents a combination of the
binding affinities of the repressor to its operator site, and RNA
polymerase to the promoter, the binding site positions, and
possibly other factors. An algorithm described in Methods de-
termines the values of �i, ki, and A(t) from the data at two UV
doses. The error is under 25% for most promoters (Table 1). We
note that other trial functions could be used in place of Eq. 2 (see
Methods), and that the results are expected to be insensitive to
the mathematical representation used.

Detection of Promoters with Additional Regulation. Promoters that
do not belong to the system can be easily detected by using this
approach because they are assigned a much larger error (e.g.,
150% error for the lacZ promoter, Table 1). Interestingly, one of
the SOS promoters, uvrY, is found to have a large error (45%).
This operon has been recently found to participate in a two-
component signaling system related to stationary-phase re-
sponse (27, 28), and there is evidence that it is regulated by
transcription factors other than LexA (29). The relatively large
30% error of polB may hint that it also has slight, as of yet
uncharacterized, additional regulation. In summary, large errors
in the present approach may help to detect genes that have
additional regulation.

Fig. 4. Promoter activity (solid line) and promoter activity predicted from the
kinetics of a single promoter (uvrA) by using the �i and ki values and Eq. 3
(dashed line) at UV � 5 Jm�2. The promoter activity of recA and lexA is
multiplied by 0.25.

Table 1. The effective kinetic parameters for the SOS system (�SD)

Gene k � E Function

uvrA 0.09 � 0.04 2,800 � 300 0.14 Nucleotide excision repair
lexA 0.15 � 0.08 2,200 � 100 0.10 Transcriptional repressor
recA 0.16 � 0.07 3,300 � 200 0.12 Mediates LexA autocleavage,

blocks replication forks
umuD 0.19 � 0.1 330 � 30 0.21 Mutagenesis repair
polB 0.35 � 0.15 70 � 10 0.31 Trans-lesion DNA synthesis,

replication fork recovery
ruvA 0.37 � 0.1 30 � 2 0.22 Double-strand break repair
uvrD 0.65 � 0.3 170 � 20 0.20 Nucleotide excision repair,

recombinational repair
uvrY 0.51 � 0.25 300 � 200 0.45 SOS operon of unknown function,

additional roles in
two-component signaling

lacZ — — 1.53 Unrelated to SOS system

E is the mean error for the promoter activity prediction (see Methods).
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Determining Dynamics of an Entire System Based on a Single Repre-
sentative. The parameterization procedure produces a quantita-
tive kinetic model of the system dynamical behavior. Once � and
k are determined for each operon, one need only measure the
kinetics of a single promoter in a new experiment to estimate all
other SOS promoter kinetics. The equation for transforming the
kinetics of promoter n, Xn to that of promoter m, Xm is

Xm�t� �
�m

1 �
kn

km
� �n

Xn�t�
� 1� . [3]

The estimated kinetics using data from only one of the operons
(uvrA) agree quite well with the measured kinetics for all
operons (Fig. 4). The same level of agreement is found by using
any of the other operons as the representative. Eq. 3 depends on
the ratios of the kinetic constants. We find that the ratios km�kn

and �m��n are the same in growth in rich (LB) and minimal (M9)
media, at 30°C and 37°C, and in two different E. coli strains,
MG1655 and AB1157 (not shown).

Repressor Protein Concentration Profile. The present measure-
ments are at the transcription level, where GFP is produced
under the control of different promoters. We do not directly
measure the concentrations of the proteins produced by these
operons, only the rate at which the corresponding mRNAs are
produced. However, the parameterization algorithm allows
calculation of the relative concentration of the master tran-
scriptional repressor (LexA) in its active form by using the
transcription kinetics (Fig. 5). The calculated concentration,
A(t), decreases after UV irradiation, reaches a minimum at
about half a cell cycle, and then recovers. The predicted
relative protein levels are reasonably similar to immunoblot
measurements of LexA protein level in the same strain and
conditions reported by Sassanfar and Roberts (24), in partic-
ular at early times.

Discussion
The present study demonstrated that effective kinetic parameters
could be determined for a transcriptional regulation system of
known structure. Furthermore, the active transcription factor pro-
tein level could be calculated. This approach is based on algorithms

that determine the kinetic parameters within a mathematical model
of the regulatory network by using accurate promoter-activity
measurements.

Detailed Temporal Program of Expression in the SOS DNA Repair System.
The parameters ki, which qualitatively correspond to the threshold
of activation of each operon, are the main parameters that control
the kinetics of a single-input module system (25). In the case of a
repressor whose concentration varies with time, the larger the ki
value, the earlier the gene is turned on and the later it is turned off
(25). In the SOS system, the initial decrease in LexA levels is very
rapid, and thus the operons turn on at about the same time. We find
that they turn off, however, at different times, with timing differ-
ences on the order of 10 min between operons. The first operons
to turn off (smallest k values) are uvrA, part of the earliest repair
process, nucleotide excision repair, and lexA and recA, the SOS
regulatory genes. Next is umuDC, which encodes for mutagenesis
repair enzymes that allows the replication forks to bypass the lesions
and resume DNA replication (30, 31). The last genes to turn off are
polB, which is involved in replication fork recovery after DNA
damage (31), and ruvA and uvrD, which are involved in late-stage
repair processes (uvrD also participates in early repair) (14). The
order of inactivation thus correlates with the function of the gene
products, with genes responsible for early repair processes turned
off first, and those related to recovery and adaptation turned off
last. Similar mechanisms may be at play in determining the detailed
temporal order in flagella biosynthesis (10) and other systems (6,
32) and may be a recurring motif in transcriptional network
dynamics.

Mechanism of SOS System Induction. It is generally difficult to measure
protein activity profiles in vivo. The present approach addresses this
problem by enabling calculation of the active repressor profile from
its transcriptional effects on downstream operons, which compares
well with direct immunoblot measurements (Fig. 5). Both the
calculated and measured profiles of LexA protein concentration
have similar qualitative features. The initial rate of decrease is
independent of UV dose (under the present conditions, the cleav-
age rate is dA�dt 3 cell cycle�1), suggesting that the initial cleavage
rate of LexA is independent of UV damage. This finding is
consistent with activation of RecA primarily at stalled replication
forks (14). At the UV damage levels used in the present study, there
are thousands of lesions in each chromosome, and the replication
forks are stalled within seconds after UV irradiation (14). Because
the number of replication forks and the number of RecA monomers
activated at each fork are presumably independent of damage level,
one expects that the initial rate of LexA cleavage will be UV
damage independent.

The present parameterization algorithm could in principle
apply to any gene system controlled by a single transcription
factor or gene systems controlled by multiple transcription
factors provided that the activities of all but one are held
constant during the experiment. One limitation of the present
algorithm is that it cannot capture systems with multiple
varying transcriptional inputs. This approach needs to be
generalized to include such cases, which requires a quantitative
understanding of the cis-regulatory logic that combines mul-
tiple inputs at each operon (33). The present accurate kinetic
measurements could be performed in principle at a genomic
scale with arrays of reporter strains (34), which raises the
possibility of producing kinetic models of cellwide regulatory
networks.
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Fig. 5. The effective relative repressor concentration A(t) at UV � 5 Jm�2

(solid line) and UV � 20 Jm�2 (dotted line). The cell cycle time is 45 min. Relative
uncleaved LexA protein levels measured by using immunoblots by Sassanfar
and Roberts (24), at UV � 5 Jm�2 (*) and UV � 20 Jm�2 (E) in the same strain
and conditions.
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