

${\bf Elektrodynamik}\\ {\bf Wintersemester}~{\bf 2014/15}$

HU-Berlin - Institut für Theoretische Biophysik

Übungsaufgaben zur Wiederholung

Aufgabe 1 Zur Erinnerung

Vergegenwärtigen Sie sich noch einmal die Maxwellgleichungen, die Integralsätze von Gauß und Stokes, die Beziehungen zwischen Feldern und Potentialen, die Kontinuitätsgleichung für Ladungen sowie die Coulomb- und Lorenzeichung.

Aufgabe 2 Vektoranalysis I

Zeigen Sie mit Hilfe des ε -Tensors, für beliebige Vektorfelder \vec{A} und \vec{B} und für skalare Felder ψ ,

- a) div rot $\vec{A} = 0$.
- b) rot grad $\psi = 0$.
- c) rot (rot \vec{A}) = grad(div \vec{A}) $\Delta \vec{A}$.
- d) $\operatorname{rot}(\psi \vec{A}) = (\operatorname{grad} \psi) \times \vec{A} + \psi (\operatorname{rot} \vec{A}).$

Aufgabe 3 Vektoranalysis II

Berechnen Sie für alle Punkte $\vec{r} \neq \vec{r}'$ die folgenden Ableitungen:

- a) $\nabla \frac{1}{|\vec{r}-\vec{r}'|}$.
- b) $\Delta \frac{1}{|\vec{r} \vec{r}'|}$.

Aufgabe 4 Gaußscher Integralsatz

Wie lautet der Gaußsche Integralsatz? Beweisen Sie den Gaußschen Integralsatz im dreidimensionalen Raum für den Spezialfall, dass das Volumen ein Quader ist.

Aufgabe 5 Gaußsches Gesetz

Wie lautet das Gaußsche Gesetz? Berechnen Sie mit Hilfe des Gaußschen Gesetzes das elektrische Feld

- a) einer homogenen Vollkugel mit Radius R und konstanter Ladungsdichte ρ .
- b) einer Hohlkugel mit Radius R und einer konstanten Oberflächenladungsdichte σ .

Die Gesamtladung der betrachteten Kugeln beträgt immer Q. Tipp: Untersuchen Sie die Fälle innerhalb und außerhalb der Kugel getrennt.

Aufgabe 6 Potential und Energie einer homogen geladenen Vollkugel

a) Berechnen Sie mit Hilfe der Poissongleichung das Potential der Vollkugel mit Radius R und konstanter Ladungsdichte ρ . Skizzieren Sie das Potential und vergleichen Sie den Verlauf mit dem des elektrischen Feldes aus Übung 1. Tipp: Verwenden Sie Kugelkoordinaten und die Beziehung:

$$\Delta f(r,\theta,\phi) = \frac{1}{r} \frac{\partial^2}{\partial r^2} (rf) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}.$$

(Die letzten beiden Terme verschwinden für radialsymmetrische Funktionen.)

b) Berechnen Sie die Gesamtenergie W der Kugel. (Hinweis: In Kugelkoordinaten gilt $\frac{dV}{dr}=4\pi r^2$.)

Aufgabe 7 Kondensator

- a) Berechnen Sie die Kapazität eines Zylinderkondensators, bestehend aus zwei konzentrischen Zylindern der Länge L und der Radien R_1 und R_2 , die jeweils mit der Ladung Q belegt sind. Dabei soll gelten, dass $L \gg R_1, R_2$ ist.
- b) Bestimmen Sie mit Hilfe des Gaußschen Satzes die Kapazität eines Plattenkondensators, bestehend aus zwei parallelen Platten der Fläche A im Abstand d, die jeweils mit der Ladung Q belegt sind. Vernachlässigen Sie Randeffekte, d.h. ignorieren Sie Felder außerhalb des Kondensatorvolumens.
- c) Wieviel Energie speichern die beiden Kondensatoren?

Aufgabe 8 Dielektrikum

Ein Plattenkondensator (Plattenfläche F, Plattenabstand d) sei ganz mit einem inhomogenen Dielektrikum mit der Dielektrizitätskonstanten $\varepsilon_r(z)$ gefüllt. Wie lautet die Kapazität? Berechnen Sie daraus die Kapazität für den Spezialfall, dass das Dielektrikum aus zwei Schichten mit Dicken d_1 und d_2 mit den Dielektrizitätskonstanten $\varepsilon_r^{(1)}$ und $\varepsilon_r^{(2)}$ besteht.

Aufgabe 9 Elektrisches Feld

Berechnen Sie mit Hilfe des Gaußschen Satzes das elektrische Feld $\vec{E}(\vec{r})$ und das Potential $\varphi(\vec{r})$ einer homogen geladenen und unendlich ausgedehnten ebenen Platte der Dicke d.

Aufgabe 10 Ableitungen elektrischer Felder

Überprüfen Sie, ob die folgenden zwei Vektorfelder elektrostatische Felder sein können und berechnen Sie die elektrische Ladungsdichte.

- a) $A(\vec{r}) = r\vec{e_x}$,
- b) $B(\vec{r}) = \psi(r)\vec{r}$,

wobei $r = |\vec{r}|$.

Aufgabe 11 Dipolfeld

Skizzieren Sie graphisch das elektrische Feld (Feldlinien) und das Potential (Äquipotentialflächen) eines elektrischen Dipols.

Aufgabe 12 Vektorpotential

Konstruieren Sie ein Vektorpotential \vec{A} derart, so dass das resultierende magnetische Feld \vec{B} konstant ist und darüber hinaus nur Beiträge in x-Richtung aufweist.

Aufgabe 13 Kontinuitätsgleichung

Leiten Sie aus den Maxwell'schen Gleichungen die Kontinuitätsgleichung $div\vec{j}=-\frac{\partial\rho}{\partial t}$ her.

Aufgabe 14 Magnetischer Dipol

Das Vektorpotential eines magnetischen Dipols mit einem Moment $\vec{\mu}$ lässt sich schreiben als:

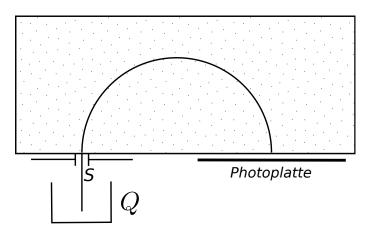
$$\vec{A}(\vec{r}) = \frac{\vec{\mu} \times \vec{r}}{r^3}.$$
 (1)

Erfüllt dieses Potential die Coulomb-Eichung $\nabla \cdot \vec{A} = 0$? Hinweis zur Lösung: Verwenden Sie den ε -Tensor und beachten Sie, dass $\frac{\vec{r}}{r^3}$ sich als ein Gradientenfeld schreiben lässt.

Aufgabe 15 2. Ampèresches Gesetz

(a) Leiten Sie mit Hilfe des Stokeschen Satzes und der Beziehung $rot\vec{B} = \frac{4\pi}{c}\vec{j}$ das 2. Ampèresche Gesetz in Integralform her.

- (b) Gegeben sei ein unendlich langer Hohlzylinder mit dem Innenradius R_1 und dem Außenradius R_2 , durch den ein Gesamtstrom I mit einer homogenen Stromdichte fließt. In welche Richtung zeigt die hervorgerufene magnetische Induktion \vec{B} ? Stellen Sie die magnetische Induktion \vec{B} bildlich dar und geben sie das Feld in Abhängigkeit vom Abstand zur Rotationsachse des Zylinders an. Betrachten Sie sowohl den Innenraum als auch den Außenraum.
- (c) Bestimmen Sie das Feld \vec{B} wie in Aufgabenteil (b), aber für einen gleichmäßig durchflossenen Vollzylinder.



Aufgabe 16 Teilchen, Magnetfeld

Teilchen der Masse M werden in einer Ionenquelle Q einfach ionisiert und durch die Spannung U beschleunigt. Sie treten durch einen Schlitz S in das Magnetfeld B senkrecht zur Zeichenebene ein (siehe Abbildung). Wo treffen sie auf die Photoplatte? Wie kann mit dieser Anordnung die Masse der Teilchen festgestellt werden?

Aufgabe 17 Elektromagnetische Welle

a) Leiten Sie aus den Maxwell-Gleichungen für das Vakuum (in Abwesenheit von Ladungen und Strömen ($\rho=0$ und $\vec{j}=0$)) ab, dass für das magnetische Feld \vec{B} die Wellengleichung

$$\left(\Delta - \frac{1}{v^2} \frac{\partial}{\partial t^2}\right) \vec{B} = 0 \tag{2}$$

gilt. (Sie benötigen die Identität $\nabla \times (\nabla \times \vec{a}) = \nabla(\nabla \vec{a}) - \Delta \vec{a}$). Wie hängt die Ausbreitungsgeschwindigkeit v mit der Lichtgeschwindigkeit c zusammen?

b) Welcher Zusammenhang zwischen $v, k = |\vec{k}|$ und ω muss bestehen, damit das magnetische Feld $\vec{B} = \vec{B}_0 \cdot e^{i\vec{k}\cdot\vec{r}-i\omega t}$ die Wellengleichung erfüllt?