Vorlesung "Modellierung von Zellprozessen" Aufgabenblatt 1: Modellierung

WS 2009/2010, Dozent: Wolfram Liebermeister

1. Small network structure

Draw the the reaction system
$P_{1}+S_{2} \stackrel{v_{1}}{\leftrightarrows} S_{1}+S_{3}$
$S_{1}+S_{3} \stackrel{v_{2}}{\longleftrightarrow} P_{2}+S_{2}$
as a network, write down its stoichiometric matrix, and determine potential fluxes in stationary state. Are there linear conservation relations? (v_{i} : reaction rate, S_{j} : internal (variable) compounds, P_{k} : external (fixed) compounds)

2. From the ODEs back to the reaction

Consider the following system of differential equations. Try to find out a reaction scheme that corresponds to these reactions. Are there cases of activation or inhibition?

$$
\begin{aligned}
\frac{d M_{1}^{-}}{d t} & =-k_{1} \cdot M_{1}^{-} \cdot \frac{1}{\left(1+M_{3}^{+}\right)}+k_{2} \cdot M_{1}^{+} \\
\frac{d M_{1}^{+}}{d t} & =+k_{1} \cdot M_{1}^{-} \cdot \frac{1}{\left(1+M_{3}^{+}\right)}-k_{2} \cdot M_{1}^{+} \\
\frac{d M_{2}^{-}}{d t} & =-k_{3} \cdot M_{2}^{-} \cdot M_{1}^{+}+k_{4} \cdot M_{2}^{+} \\
\frac{d M_{2}^{+}}{d t} & =+k_{3} \cdot M_{2}^{-} \cdot M_{1}^{+}-k_{4} \cdot M_{2}^{+} \\
\frac{d M_{3}^{-}}{d t} & =-k_{5} \cdot M_{3}^{-} \cdot M_{2}^{+}+k_{6} \cdot M_{3}^{+} \\
\frac{d M_{3}^{+}}{d t} & =+k_{5} \cdot M_{3}^{-} \cdot M_{2}^{+}-k_{6} \cdot M_{3}^{+}
\end{aligned}
$$

3. The repressilator The repressilator (M. Elowitz and S. Leibler, Nature 2000) is a genetic circuit consisting of three proteins, each inhibiting the production of the following protein in a circle. Consider the following kinetic equations for synthesis and degradation of the proteins:

$$
\begin{aligned}
v_{i}^{\mathrm{syn}} & =\frac{\beta}{1+x_{l(i)} / k} \\
v_{i}^{\mathrm{degr}} & =\alpha x_{i}
\end{aligned}
$$

with $i=1,2,3$ and $l(1)=3, l(2)=1, l(3)=2$.
The reaction rate vector reads $v=\left(v_{1}^{\text {syn }}, v_{2}^{\text {syn }}, v_{3}^{\text {syn }}, v_{1}^{\text {degr }}, v_{2}^{\text {degr }}, v_{3}^{\text {degr }}\right)^{\mathrm{T}}$.
(a) Write down the stoichiometric matrix and the differential equations for the protein levels x_{i}.
(b) Consider a stationary state with $x_{1}=x_{2}=x_{3}=\bar{x}$. Calculate the elasticity matrix ε^{S}. (Hint: it is not necessary to compute the value of \bar{x}.)
(c) Compute the Jacobian matrix by the formula $M=N \varepsilon^{\mathrm{S}}$.
(d) How could you decide based on M whether the stationary state is stable?

