
4 Network Motifs

4.1 Regulation networks

Cellular processes are fine-tuned by complex regulations e.g. signaling pathways, the transcription network,
and circuits for cell cycle control, the regulation of growth or stress response. Signaling systems can be
described as a network, with nodes representing biochemical substances or complexes (sometimes in different
modifications). Transcriptional regulation of genes by transcription factors can be schematically represented
by networks. In this case nodes represent proteins, and arrows display the bounding ability of transcription
factors to the promoter region. The arrows can be quantified by gene input functions. The structure of the
network is determined by binding sites (their sequences can be determined transcription factor binding can
be examined by in vivo experiments) in the regulatory regions of the genome.

An arrow in the network declares that a substance affects another substance (e.g. it catalyses the production
/degradation).The inputs of multiple arrows pointing to a single node have to be processed and this can
be described (simplification!) by boolean functions (e.g. logical AND or OR). (Substance levels are often
balanced by opposing processes like synthesis and degradation.)
Signaling pathways detect input stimuli and translate the information (concentrations, modifications, lo-
calization of proteins, e.c.) to output signals effecting downstream processes, (e.g. processes like gene
expression). For this reason they can be looked upon as information-processing devices. The input-output

relation of a signaling system can conduct information-processing tasks such as classification, regression,
data compression or transduction of signals.
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Figure 1: Regulatory patterns with one, two or three nodes. (a) Autoregulation: positive = red; negative
= blue (b)A Model with two nodes (c) Models with three nodes can have 6 arrows. Below three arrows are
selected, one obtains the inconsistent feed-forward loop type I(this is found as a network motif in transcription
networks) (for further information see Figure 6).

The network structure is not random, e.g. the transcription network of E. coli contains dense overlap-

ping regulons, strongly interconnected subnetworks that respond to a set of input stimuli and control the
expression of functionally related genes. The negative autoregulation or the feed-forward loop (see Figure
5 ) are examples for typical network motifs (see below). They often appear in clusters, which have been
described as generalized motifs.

4.2 Erdös-Renyi random graphs and network motifs

Patterns that appear much (=significantly) more often than expected by chance are called network motifs.
To declare what is significant, we need a null model, a graph in which structure only appear “by chance”.
A simple possibility are Erdös-Renyi random graphs.

We consider N nodes with random connections between them. Each possible edge is realised independently
with probability p. After deciding about each possible edge, one obtains a graph, which is a realisation of
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the random graph. Alternatively, one may allow for exactly k edges and distribute them randomly. For large
graphs, both random graphs have similar statistical properties.
A random graph with N nodes has N ∗ (N − 1) divided edges among different nodes and N self-edges ⇒

And we get N2 possible edges.

If k edges are realised, the probability for an possible edge is p = k
N2 . Random graphs can serve as a null

hypothesis to decide if certain propertis of natural networks are statistically significant.

Random graphs with preserved degrees Random graphs with predefined degrees (# of incoming and
outgoing edges per node) can be obtained by repeated flipping of (randomly chosen) edge pairs:
(see Fig.2.)

Figure 2: This operation preserves all degrees, but randomises other statistical properties of the graph.

4.3 Example: self-regulation as a network motif

A transcription network (E.coli) contains N = 424 nodes, k = 519 edges and 40 self-edges. Is this number
significantly high? (In other words: is self-regulation a network motif?)

To decide this, we count the self-edges in a random graph (3) with the same numbers of nodes and edges.

Figure 3: The adjacency matrix aij represents the structure of a graph. A value aij = 1 indicates an
edge from the node j to node i. If k entries (= k edges) are randomly distributed the number of self-
edges (entire on the diagonal) is approximately binomially distributed, prob(n) ≈

(

k
n

)

pn(1 − p)k−n, where

p = 1
N = N

N2 = number of diagonal elements
number of all matrix elements .

The number of self-edges in the random graph has the mean value 〈n〉 =
(

k
N

)

and standard deviation

σn =
√

k
N . With the above numbers, we obtain the Z-score:

nobserved − 〈nrandom〉

σn,random
≈ 32, which is highly significant.

Self-regulation is a network motif in the transcription networks, i.e. a local structure that appears signifi-

cantly more often than in a comparable random network. The frequence occurence may limit at a selection
pressure that led to the evolution and preservation of the network structures. The degree of significance
depends on the random graph considered.

Possible functions of the self-regulation:
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• self-activation may lead to bistable behavior

Figure 4: self-activation=left; self-inhibition=right

• self-inhibition may stabilize the node at a certain expression value, or speed up its response.

Efficient and fast response A fast response can be important for cells: for instance, if the input signal
indicates that a nutrient is available, while the output starts the production of enzymes needed to use this
nutrient. The response time in the linear scheme with linear kinetics is determined by the degradation
constant k2: a way to speed up the response would be to increase the turnover; but in order to reach the
same steady state level rsteady in the model, also the synthesis rate v needs to be increased. Therefore, a fast
response would be paid by an permanent higher production of R, which costs energy and material. Negative
feedback can speed up the response without this disadvantage: at low levels of r, the value of v is high; later,
self-inhibition kicks in, synthesis occurs at a lower rate, and the system relaxes towards the steady state as
before.
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Figure 5: Network motifs in the transcription network of the yeast S. cerevisiae. After Lee et al.
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Figure 6: Feed-forward loops. There is a direct regulation of the output gene Z by the input gene X via Y:
(a) Coherent feed-forward loop type 1 (with AND gate). (b) Incoherent feed-forward loop type 1 (with OR
gate). (c) Possible realisation by a kinetic model. X is activated (X∗) by a small effector molecule.
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4.4 The Feed-forward Loop

The feed-forward loop (FFL) is a common motif in transcription networks, that consits of three interacting
genes: an input gene X regulates the output gene Z via an intermediate gene Y. Each edge can be positive or
negative. The two inputs of Z can be described by boolean functions like the logical AND or OR (examples
shown in Fig. 6).

The transcription network in E.coli ( N = 424 genes, k = 591 nodes) contains 42 FFL, and no feedback-3-
loop. In an Erdös-Renyi random graph, we expect about 0.6 ± 0.8 FFL.

In a coherent FFL type 1, all regulations are activating, while in an incoherent FFL type 1, Y inhibits Z.
(Other types of feed-forward loops, with different sign combinations, occur rarely and will not be considered
here.)

At first sight, the function of the branch via gene Y in the feed-forward loop is not obvious: in the coherent
FFL, the two branches seem redundant, and in the incoherent FFL, they neutralize each other. But like
the adaption motif, this argument holds only in steady-state situations. If (for an incoherent FFL type 1)
the input X is suddenly switched on, gene Y turns up with a delay. That means Z is first activated via the
direct branch and later inhibited again by Y. Furthermore a step in the input X is translated into a peak-like
behavior of Z.

Dynamical models and measurements in gene circuits in E. coli have shown that feed-forward loops can
(i) serve as sign-sensitive delays, (ii) generate temporal pulses, and (iii) accelerate the response to an input
signal. This behavior depends on the kinetic parameter or the boolean paradigm.

4.5 Dynamic Model of the Feed-Forward Loop

To translate the boolean structure of a feed-forward-loop into a simple kinetic model, we assume that gene
X is expressed constitutively and its activity x is controlled by the concentration of a ligand, whereas the
activities of Y and Z are determined by their expression.
If transcription and translation are packed into a single step, we get the rate equations

dy

dt
= fy(x) − βy y (1)

dz

dt
= fz(x, y) − βz z. (2)

y and z denote protein levels,whereas fy and fz are the production rates, and βy and βz are degradation
constants.

To study the dynamic behavior, it is practical to describe the transcription of Y by a step-like gene input
function:

fy(x) = αy Θ(x > x0). (3)

The truth function Θ(·) produces a value of 1 if the inequality in the argument is satisfied, otherwise it is
0. As long as x stays below the threshold value x0, Y is not transcribed; otherwise, Y is transcribed with
constant rate αy.

Let us consider two cases, (i) a coherent FFL with a logical AND input function for the production of Z,
and (ii) an incoherent FFL with a logical AND function. The corresponding input functions for gene Z are:

coherent, AND: fz(x, y) = αz Θ(x > x0 AND y > y0)

incoherent, AND: fz(x, y) = αz Θ(x > x0 AND NOT y > y0). (4)

Figure (7) shows simulation results from model (of equation 1), with input functions (3) and (4) and a
predefined, pulse-like input x(t).
Characteristic features of thefeed-forward loop are:
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Figure 7: Dynamic behavior of two types of feed-forward-loop (FFL). (a) Coherent FFL type 1 with AND
logic (see Fig. 6, (a)). Time curves for active input X (top), intermediate gene Y (center), output Z (bottom)
are shown (arbitrary units). The FFL filters out the short pulse; the response to the longer pulse is delayed,
but the response to the end of the pulse is immediate. (b) Incoherent FFL type 1 with AND logic (see Fig. 6,
(b)). The onset of each input pulse leads to a pulse of Z of fixed maximal length.

• The coherent-AND FFL shows a delayed response to the onset and an immediate response to the
end of pulses. For this reason short pulses are filtered out.

• The incoherent-AND FFL responds immediately to an input pulse, but this response is switched off
only after a while. In return input pulses are translated into standard pulses of similar length (pulse
generator).

4.6 Single-input-module

The basis for this model is the assumption of a co-regulation by a single signal (occurs, for instance, in
metabolic pathways with product inhibition) (see Fig.9).

Therefore temporal gene expression programs offer the advantage to regulate the strength and chronology
of enzyme activation/deactivation.

’First in, last out’-production. The genes are first activated one after the other and later inactivated in
reverse order. (Fig.10). This is used by the cell for a just-in-time production of e.g. important metabolites.

4.7 Multi-Z-FFL

The priciple of this kind of regulation are coherent FFL that reacts with an or-logic and reversed threshold
values (see Fig. 11).

This means there is not a single co-regulating signal (Single-Input-Module principle). The gene that is
activated at first is inactivated at first, too. (Fig.12)⇒ ’first in, first out’-production. This can be
helpful if parts of a protein complex (e.g., bacterial flagellae) are produced in a certain order, but with
approximately fixed stoichiometry.

4.8 Adaption Motif (*)

An important property of signaling systems is their transient response to changing inputs. The system
shown in Figure 13 has a remarkable property called precise adaption : after a jump of the input value, it
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Figure 8: Gene regulation network coordinating sporulation in the bacterium B. subtilis. Some microbes can
transform themselves into spores, which are much more resistant to adverse environmental conditions than
the livin bacteria. When sporulation is triggered in the soil bacterium B. subtilis, a gene regulatory network
produces several waves of gene expression, in which many genes are regulated in a temporally coordinated
manner. The system contains a number of feed-forward loops that activate the downstream target genes.
Activation of the Master regulator σE triggers waves of expression in different groups of target genes (denoted
by X1, X2, X3, X4). After Eichenberger et al.

Figure 9: Co-regulation by a single signal.

shows a transient dynamics, but in the long run, it always returns to exactly the same steady state. Precise
adaption combines sensitivity to temporal changes with robustness against the baseline value and plays a
vital role in the bacterial chemotaxis.

In the adaption motif shown in Figure 13, the input X activates the production of Z, but inhibits it again
via activation of Y. With mass-action kinetics and linear activation, we get the equations:

dy

dt
= αy x − βy y (5)

dz

dt
= αz x − βz y z.

For x>0, they lead to steady state:

yst =
αy

βy
x, zst =

αz βy

βz αy
. (6)

The steady-state level of Z depends only on kinetic constants. In steady state, the activation and inactivation
are balanced. When the input suddenly changes, activation responds faster, which leads to a transient peak
(Fig. 13 (b)).
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Figure 10: Graph of a ’first in, last out’-production

Figure 11: Principle of a multi-z-feed forwrd loop

4.9 Negative Feedback (*)

Negative feedback is very common in transcription networks and it is also important for metabolic pathway
regulation. For instance, to prevent overproduction and stabilize the amount of amino acids, the first enzyme
of amino acid synthesis is often inhibited by the final product.
The effect of negative feedback on cellular dynamics can be: (i) the stabilization of a state of acellular
network; (ii) the reduction of the variance of fluctuations and the variability of steady states; (iii) the
production of pulse-like overshoots; (iv) the induction of sustained oscillations; (v) and the acceleration of
response times.

In the model (see Fig. 14), all reactions follow irreversible mass-action kinetics vi = ki si−1, the external
substrate level s0 = 1 is kept constant, and all other metabolites start at levels si = 0. The first reaction is
inhibited allosterically by one of the downstream metabolites. The feedback inhibition by the nth metabolite
can be implemented as v1 = s1k1

(1+sn/KI

).

Without feedback, metabolite concentrations reach a steady state after a short transition period (Fig. 14
(a)).

By adding an inhibition by the second metabolite, the level of the first metabolite shows an overshooting
response (Fig. 14 (b)) and a inhibition by the last metabolite leads to damped oscillations(Fig. 14 (c)).

Figure 12: Graph of a ’first in, first out’-production
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Figure 13: The adaption motif. (a) The signal X catalyzes the production of Y and Z;and Y catalyzes
the degradation of Z (b) Temporal profile of the adaption motif: a step-like input level x=black induces a
sustained response of y=red; z is the output level = blue and shows a transient response before returning
to its steady state value

The example also shows that negative autoregulation can speed up the system’s response to external changes.
The response time τ(1/2), defined as the time at which the last metabolite Sr reaches its half-maximal level,
decreases from a) to c) shown in Fig. 14.
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Figure 14: Negative feedback in an unbranched metabolic chain. (a) Concentration time series [ (- -) is the
external substrate (s0 = 1) that becomes available at time t = 0]. (b) Negative feedback by the second
metabolite (c) Negative feedback by the last metabolite -¿overshoot and damped oscillations.
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