
5 Gene regulation funtionsRegulation of gene expression is one of the main ontrol mehanisms in ells. Biohemially, mRNA transrip-tion is ontrolled by regulatory proteins (e.g. σ fators and transription fators), whih bind to regulatorysites on the DNA and modulate the promoter ativities of genes or operons.To obtain dynami models of gene networks, the simple qualitative arrows need to be replaed by quantitativegene regulation funtions, the rate laws of transription. Gene regulation funtions have been determinedaurately for individual promoters(e.g. for the La operon in E. oli) by �tting predited mathematialfuntions to measured transription data. Based on high-throughput expression data, simple gene regulationfuntions and regulator ativities an be estimated even for larger transription networks.5.1 Equilibrium binding of transription fators5.1.1 Transription fator binding to promotorIn boolean models, gene regulation is desribed as an all-or-none deision. In kineti models, it is desribedby ontinuuous funtions that arise from a model of transription fator (TF) binding (all-or-none on themirosopi level.) In the following, we assume (i) a binding equilibrium for transription fators and (ii) aertain average transription rate in eah binding state.
Figure 1: Example of transription fator binding to a promotorWe treat the following example (see Fig.1): T is an ative, free transription fator, D is the DNA bindingsite and C is the omplex, whih aures when T and D bound together. T + D ⇐⇒ C, with Dt = D + C(1 DNA moleule per ell  * 1µm3 in e.oli) → C = Dt − DThe rate equation for the onentrations are:

dC

dt
= k+ ∗ T ∗ D − k−C (1)Chemial eqilibrium:

C =
T ∗ D

k−/k+
, (2)with k−

k+
= KD =dissoiation onstant.The greater the value of kD, the more easily the omplex will dissoiate beause the binding energy is lower.Thus, the binding energy determines kD. We equal the equations for C and get:

D =
Dt

1 + T/kD
(3)and further:

C =
DtT

kD + T
. (4)1



Figure 2: Conentration of DNA-binding sites (top) and the onentration of omplexes (bottom) plottedagainst the onentration of ative transription fator T moleules.At the onentration x = kD, exatly half of the binding sites are empty (see Fig.2). For x → ∞, C → Dtot.We get the probability of a single free binding site with the equation: p = 1
1+T/kD5.1.2 The transription rate for a repressor geneIf no repressor is bound, Pol II binds and the transription starts. The maximum transription rate βdepends on the promotor quality and an be hanged with single-point mutations.If we assume onstant transription for the empty promoter and no transription at all for the represser-bound promoter, the promoter ativity (=transription rate) with repressor is given by Y = β

1+R∗/kD
, where

R∗ is the ativated repressor.5.1.3 Cooperative bindingA transription fator (TF) an be a dimer, tetramer, et etera ontaining various idential subunits with nbinding sites. Now we are only interested in oupied transription fators beause the ooperative bindinghas to be examined. Consider the reation of an unbound to a bound TF: n ∗ S + x ⇐⇒
−

x

• Bound TF: −

x= xtS
n

kx
n+Sn

• Free TF: x = xt

1+Sn/Kx
nWe obtain a step-funtion with a step at kx for n → ∞ (see Fig. 3).
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Figure 3: Relation between the number of induer moleules S and bound TF x5.2 Gene regulation funtions derived from equilibrium binding: the generalaseA kineti law is used for the transription rates to desribe gene expression. The rate y is then given by agene regulation funtion
y(t) = f(x(t),p). (5)

y is the transription rate of a gene. It depends on regulator ativities xl. The parameter vetor p and themathematial form of f are spei� for eah gene (however, di�erent genes may be modeled with the samefuntional form). The vetor x ontains the ativities of all regulators for the gene. In eukaryotes, promotersan proess a large number of inputs. They have ompliated input funtions. A gene input funtion
fi desribes mirosopi proesses like binding of regulators. It is determined by the nuleotide sequene ofthe promoter region. Fig. 4 shows di�erent binding states of the La promoter in a simpli�ed sheme with�ve states. Figure (5) shows the relationship between promoter sequene and gene input funtion: a gene

RNA polymerase
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Repressor LacIFigure 4: Mirosopi states of the La promoter (shemati model). Bound ativator inreases the prob-ability of polymerase binding (right). Transription an our in states with bound polymerase (bottom).The promoter an be bound by RNA polymerase and the ativator CRP. The bound repressor LaI inhibitsthe binding of other moleules (left).promoter an assume various mirosopi states, haraterized by di�erent regulators bound to its bindingsites and by di�erent onformations of the DNA. Two basi assumptions For a quantitative model:
• There is a thermodynami equilibrium between the di�erent states. The probability for eah statedepends on its binding energy and the regulator moleules availability.
• The transription initiation ours randomly at a ertain rate in eah state.Eah onformation state of the gene input funtion fi is haraterized by a free energy F = E − TS where

E and S denote the energy and the entropy of the state and T is the temperature. On the one hand, thefree energy F aptures energies related to regulator binding or bending in DNA loops and these energiesdepend on presene and sequenes of regulator binding sites (of the promotor sequene). On the other hand,the entropy term depends on the number of free regulator moleules. The free energy F of a promoter3
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Figure 5: Shemati relation between nuleotide sequene and transription rates. There is shown thetransription funtion of a single transription fator (= ativator), (bottom, right). The funtion of aninhibitor is reversed.state determines its statistial weight wi = exp(−Fi/(kBT )) in the Boltzmann distribution, and the totaltransription rate:
y =

∑

i wi vi
∑

i wi
(6)is omputed as the weighted average over the synthesis rates in the di�erent states.We obtain an expression for the gene regulation funtion, if we write the transription rate as a funtion ofregulator onentrations .5.3 The La operon in Esherihia oliMetabolites an ontrol the enzymes that atalyze their own prodution or onsumption. With the resultingfeedbak loop the protein levels an be onstantly adapted to the urrent needs of the ell. Esherihia olibateria prefer gluose as their energy soure. For this reason, they sustain enzymes for gluose metabolismunder all onditions. Bateria an utilize other sugars suh as latose exept of gluose. The enzymes

β-galatosidase, permease, and thiogalatoside transaetylase (they are important for the onsumption oflatose) are oded and regulated together in transription unit La operon.When ells are shifted from a gluose-rih medium to a gluose-free, but latose-rih medium, they need anadaption time before they an assimilate latose (at a high rate). The expression level of the La operonis inreased when gluose is missing and latose is present. A strong La expression follows the logial rule`low gluose AND high latose' (in approximation).The transription rate is ontrolled by ombining two (biohemial) signals (Figure 6 (a)). On the one hand,a high gluose level dereases [AMP℄, an intraellular messenger that ativates the transriptional ativatorCRP. (That is why at high gluose levels, CRP remains inative, and La transription is low.) Latose, onthe other hand, is sensed via allolatose, an isomer formed by onverting the 1-4 bond of latose into a 1-6bond. Allolatose ativates the transriptional repressor LaI, whih shuts down La expression by blokingthe binding of polymerase and by promoting a DNA loop. If no latose is present, La expression will alsobe low.The La operon beomes a strong expression, if the repression is released and the ativator CRP is bound,(happening when Gluose is absent but Latose is available). Experiments have shown, CRP and LaI (the4



regulators) an be ontrolled by the extraellular levels of AMP and IPTG, (a substitute for allolatose)shown in Figure 6 (b).
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−Figure 6: Regulation of the La operon. (a) The La operon is ontrolled by the transriptional regulatorsCRP and LaI, whih respond to extraellular levels of latose and gluose. High expression of the Laoperon requires that latose is present and gluose is absent. (b) In an experiment, the ativities of CRPand LaI are regulated by extraellular levels of the ligands AMP and IPTG. E�etively, both substanesativate La expression.5.4 Gene regulation funtion of the La operon(a) (b) ()
Figure 7: Gene regulation funtions of the wild type La operon and two variants: (a) Gene input funtionin an E. oli wild-type strain. (b) An OR-like input funtion. () An AND-like input funtion.Does the gene regulation funtion in living ells follow the above predition? Setty et al. have experi-mentally determined the input funtion of the La operon in living E. oli ells. The transription rateswere measured by GFP under the ontrol of the La promoter. The regulator ativities were regulated viaextraellular levels of AMP and IPTG. The transription rate is plotted against logarithmi onentrationsof extraellular AMP and IPTG. It shows four plateaus orresponding to the possible ombinations of lowand high onentrations (Fig. 7 (a)). At high AMP and IPTG levels the transription rate is high, too.In ontrast to the boolean input funtion, the expression rates for low AMP and low IPTG are not exatlyzero and this baseline ativity has an important biologial funtion:in order to swith the La system to a high expression level, some latose has to be imported into the ellto produe the messenger allolatose.( This requires that the latose transporter LaY is already present, atleast at a low level.)If the levels of AMP and IPTG are used as proxies for transriptional ativiators (inhibition of the repressorLaI e�etively ounts as ativation), the simpli�ed mirosopi model in Figure (4) leads to a gene regulationfuntion shown in Figure 7 (a)). 5



The binding energy is determined by the sequene of polymerase transription fators an binding sites.Mutations in regulator binding sites will hange the binding energies and thereby all the other parameters
⇒ Change the shape of the input funtion (= the adaption of the input funtion to new onditions)Changes of the sequenes of polymerase and transription fator have a global impat, but hanges of thepromotor area only have lokal impat. For this reason, they are easier hanged.Point mutations (in promoter sequene of the La operon) lead to variants of the gene regulation funtions(ompare with Figure 7). The plastiity of gene input funtions allows for evolutionary �ne-tuning of thegene regulatory system. In the ase of the La operon, a pure AND-like input funtion (Fig. 7) ould haveevolved rather easily.5.5 Transriptional regulation in larger networksIf the regulator ativities x(t) and the transription rate y(t) for a gene regulation funtion (5) have beenmeasured, the parameters p an be obtained from nonlinear regression. However, it is di�ult to ontrolor measure the ative form of transription fators. In the La operon study, for instane, external levelsof IPTG and AMP had to be used as ontrollable proxies. An alternative (if the regulator ativities areompletely unknown)is to ompare the levels of di�erent target genes and to estimate the regulator aitivitiesalong with the gene input funtions.Miroarrays allow to measure the mRNA levels of thousands of genes at the same time. The expressionlevels of a single gene, measured in di�erent ell samples, form an expression pro�le. Suh data ontain:(i)valuable information about the regulators of a gene, (ii) their ativities, and (iii) the orresponding generegulation funtions.Data-driven methods like lustering or bilustering ompute similarity measures between the expressionpro�les of di�erent genes, assess their statistial signi�ane, and hypothesize that genes with signi�antoexpression may be oregulated. Even if genes respond to the same regulators, their expression pro�lesmay di�er due to (i) di�erent gene input funtions ; (ii) additional transription fators that ontrol onlysome of the genes; (iii) di�erent rates of mRNA degradation.Dynamial models of gene expression an aount for these e�ets and help to infer o-regulation morereliably than by using simple similarity sores. Most genes respond to several transription fators, andtransription fators an regulate large numbers of target genes.To determine the gene regulation funtions from expression data, the e�ets of di�erent transription fatorshave to be disentangled. One suh method is network omponent analysis, whih uses simple linear generegulation funtions and an thereby takle fairly large networks.5.6 Network omponent analysisNetwork omponent analysis (NCA) is a method to translate a known geneti network struture into aquantitative model of gene regulation. While the transription rates and the transription fators are known,the gene regulation funtions need to be omputed. In NCA, we assume linear gene regulation funtions, sothe temporal ativity yi(t) of a promoter is a weighted sum of the regulator ativities xl(t)

yi(t) =
∑

l

ail xl(t). (7)The index t refers to di�erent samples and an represent time points in an experiment. The input weights
ail indiate whether a regulator ats as an ativator (ail > 0), or as a repressor (ail < 0), or has no e�et(ail = 0) on the promoter ativity.Network strutures an be obtained from databases or from experiments. By these strutures, many of theoe�ients ail are already limited to zero values. Known modes of regulation (ativation/repression) maylimit the signs of the remaining elements ail. 6



The linear NCA model 7 resembles the statistial model used in prinipal omponent analysis. But inontrast, it is based on biologial knowledge about the struture of the geneti network. To estimate themodel parameters, we rewrite equation (7) as a matrix produtY = A X. (8)(see Fig. 8)The matrix A ontains the linear oe�ients of input funtions (rows: promoters, olumns: regulators) andX ontains the pro�les of the regulators (rows: transription fators, olumns: time points or onditions).The struture of A (positions and possibly signs of non-zero entries) is presribed by the network struture,and only the numerial values (the in�uene strengths) need to be determined from data.The aim of NCA is to estimate the regulator ativities xl(t) and the input weights ail from measuredexpression values yexp
i (t). We require that Yexp

≈ A X. (9)with least square errors. Given a data matrix Y and the above-mentioned onstraints on A, the matries Aand X an be determined by an iterative optimization:1. A is initialized with random values and X is hosen by least squares estimation.2. X is kept �xed and A is updated3. The mutual updating is iterated until onvergene.For ideal arti�ial data (obtained from an NCA model without noise), this biquadrati optimization onvergesto a global optimum for both matries A and X.If this optimum is non-unique, (depending on the network topology) NCA models may be unidenti�able(beause di�erent parameter hoies ould lead to equally good results). Identi�ability of the NCA modeldepends on the network struture. It an be heked by analyzing the wiring between regulators and theirtarget genes.The linear NCA model an also be interpreted in terms of nonlinear gene regulation funtions: if the inputs
xl and outputs yl represent logarithmi regulator ativities xl = ln cl and logarithmi promoter ativities
yl = ln vl, Eq. (7) is equivalent to a nonlinear gene regulation funtion of the form

vi(t) =
∏

l

(cl(t))
ail (10)for the original values cl and vi. This form aounts for multipliative e�ets between regulators ( but notfor saturation).Example: Assumption for the input funtion: −

Xi(t)=
−

Xi(o) ∗
∏

(
−

bj(t)

−

bj(0)

)aij

, with
a > 0 → ativation
a = 0 → no e�et
a < 0 → inhibition.Consider the logarithms: x = log

−

X(t)

−

X(o)

and b = log

−

b(t)
−

b(0)

⇒ Xi(t) =
∑

j aijbj(t).Look at �gure (8): The struture of matrix A is determined by the geneti network and the logarithmi7



Figure 8: The matrix produt usued in network omponent analysis.data X omply the equation.A Partition of this would be: X = A ∗B = AS
︸︷︷︸A′

S−1B
︸ ︷︷ ︸B′

(− >S is the diagonal matrix)Furthermore, the question arises: Is this partition unique or are there other partitions that ful�ll the samestrutural ondition?Liao et al. developed in 2003 a riterion for the NCA, whih says the partition is expliit, if:1. A has full olumn rank.2. A keeps its full olumn rank, although a freely hosen TF (and all of its target genes) is deleted.3. B has full row rank.All of these onditions have to be ful�lled by the matries. To hek, if everything is ful�lled, one an userandom numbers and test.

Figure 9: This is an example: the target genes of TF1 are target genes of TF2, too. In this ase, the matrixhas no full olumn rank and two olumns are linearly dependent. For this reason, the seond ondition ofthe riterion of Liao et al. is not satis�ed. The third ondition requires that there have to be more points oftime than TFs.Figure (9) displays an example that does not satisfy the riteria.
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