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S1 Economic balance equations

The economic balance equations (11) and (14) can be illustrated by thought experiments. We assume that
metabolite production, metabolite levels, and enzyme levels have an economic value for the cell and that their
values are related between enzymes and their substrates and products. In metabolic economics, these values are
represented by economic potentials, economic loads, and enzyme benefits. To establish relations between them,
we consider hypothetical variations of supply fluxes (or metabolite levels) and enzyme levels, specifically chosen
to leave the metabolic benefit unchanged.

S1.1 Reaction balance derived from thought experiment

The reaction balance (11) between fluxes, economic potentials, and flux gains can be derived from a thought
experiment. We first consider a reaction without external reactants and direct flux gains (ẑvl = 0). In a com-
pensated downregulation, the enzyme level is decreased from ul to ul − δul, but the effects of this change are
compensated by virtual substrate outfluxes and product influxes that keep the net production of all metabolites
unchanged (see Figure S1 (a)). Since δu is a differential, we can use a linear approximation: to compensate the
flux decrease δvl = Ēvl

ul
δul, we choose supply fluxes δϕtot

i = nil Ē
vl

ul
δul (note that they leave the conserved

moieties unchanged). The lowered enzyme level reduces the cost by hu
l δul (where hu

l is the enzyme price in
the unperturbed state). The supply fluxes δϕtot

i come at a cost wi δϕ
tot
i , where wi, yet to be determined, is the

economic potential of metabolite i. The net benefit from the supply fluxes reads
∑

i

wi δϕ
tot
i =

∑

i

wind
i nind

il Ēvl

ul
δul = ∆wl

vl
ul

δul. (S1)

Now we assume that the compensated enzyme variation is cost-neutral, i.e., the saved cost hu
l δul for the enzyme

and the additional cost for the supply fluxes cancel each other. Equating the two and dividing by δul yields the
balance equation

∆wl = hu
l ul/vl. (S2)

In a variant of the thought experiment, we assume that the reaction contains external metabolites. Again, we
apply a compensated downregulation. Since external metabolites need not be balanced, no supply fluxes are
needed for them. However, if the external metabolites have production gains (vector wx), the altered flux will
change the production benefit (Figure S1 (b)). With the definition ∆w = N⊤wc + Nx⊤wx, we obtain again
Eq. (S2). Finally, we can assume that the reaction has a direct flux gain. In this case, the flux change δv = Ēvl

ul
δul

will affect the metabolic benefit, changing the fitness by ẑvl δvl = ẑvl Ē
vl

ul
δul. Now the saved enzyme cost must

be balanced with the cost for supply fluxes minus the benefit change due to δvl:

yl δul =
[

∆zvl Ē
vl

ul
δul

]

+ ẑvl Ē
vl

ul
δul = [∆wl + ẑvl ]

vl
ul

δul. (S3)

This is our general reaction balance. In the thought experiment, it followed from the fitness change of a compen-
sated flux variations is given by the direct flux benefit. Since the compensation fluxes respect moiety conservation,
the thought experiment also works for models with conserved moieties.

S1.2 Compound balance derived from thought experiment

The compound balance, which describes enzyme costs around a metabolite, can be explained by a similar thought
experiment. If an external metabolite changes its concentration, this will directly affect the reactions in which
it appears as a substrate, product, or regulator. For instance, the level of an imported nutrient directly affects
its import rate. In a compensated variation, we increase the metabolite level by a small amount δxj ; this causes
flux changes δv∗l = Ēvl

xj
δxj as a direct effect. These changes, in turn, are compensated by enzyme changes

δul = −ul/vl (Ē
vl

xj
δxj) chosen to keep the fluxes constant, i.e.

δvl = vl/ul δul + Ēvl

xj
δxj = 0. (S4)
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Figure S1: Thought experiments illustrating economic balances between enzyme costs, economic potentials,
and economic loads. (a) Reaction balance. A reaction rate is decreased by decreasing the enzyme level; for
compensation, virtual supply fluxes are added, keeping the metabolite net production (and thereby, their steady-
state concentrations) unchanged. Since the fitness does not change, the cost of supply fluxes (given by (wB −
wA) dv = (wB − wA)

v
u
du) and the cost saving hu du for the enzyme cancel out, yielding (wB − wA)

v
u
= hu.

(b) Reaction balance with an external metabolite: now the benefit loss due to decreased production of B appears
in the balance (and no supply flux for B is needed). (c) Compound balance. An increase da of the external
concentration is compensated by a decrease du = u

v
Ēc dc of the enzyme level.

Together, the enzyme adaptions δul entail a cost

δh =
∑

l

hu
l δul = −

∑

l

hu
l

ul

vl
Ēvl

xj
δxj . (S5)

In our thought experiment for the reaction balance, we imagined that cells can shift costs between enzyme levels
and supply fluxes. Now we assume the same thing for enzyme levels and external concentrations: if the cell can
increase the external concentration by δx, it can save enzyme costs worth ∂g

∂xj
δx. The prefactor – the economic

load of the external metabolite – is given by the benefit that would result from a non-compensated increase.
Therefore, the benefit due to the changed metabolite concentration, δf = ∂g

∂xj
δxj must be compensated by an

enzyme cost. After dividing by δx, we obtain the local balance equation

δh/δxj = −
∑

l

ul h
u
l

vl
Ēvl

xj
= −

∂g

∂xj

(S6)

for external metabolites. For internal metabolites, we consider a variant of this thought experiment. We imagine
a variation of enzyme levels that specifically change one internal concentration, but leave all stationary fluxes
constant: we consider the mth independent internal metabolite; the mth column of the link matrix L is called λ,
and the mth column of the matrix product Ē L is called η. From the connectivity theorem of metabolic control
theory, we obtain the identities CJ η = 0 and CS η = −λ. We now consider enzyme changes to δul = −ul

vl
ηl δω

with some small number δω. As a result, the stationary fluxes and concentrations change by

δv = −CJ v

u
δu = CJη δω = 0

δc = −CS v

u
δu = CJη δω = λ δω (S7)

As intended, all fluxes remain constant and all metabolite levels remain unchanged except for our metabolite m
and metabolites that depend on it via conservation relations. To make the compensated variation fitness-neutral,
the benefit change

δg = zc
⊤δc = zc

⊤
λ δω. (S8)
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and the enzyme investment change

δh = hu⊤δu = −hu⊤Dg
(u

v

)

η δω. (S9)

must be balanced. By equating δg = δh and dividing by δω, we obtain the compound balance for independent
internal metabolites

zc
⊤
λ = −hu⊤Dg

(u

v

)

η. (S10)

Compound law with moiety conservation In models with conserved moieties, the variation of a metabolite
concentration will not be fully neutralised by the system response. A concentration variation can be split into
a “controllable” contribution that can be neutralised by the system, and a “non-controllable” contribution that
shift the conserved moieties. With this additional effect, the thought experiment looks as follows: We consider
a local variation of metabolite levels, described by a variation vector δγ. The direct effect on adjacent reaction
rates is δv = Ē δγ, causing a benefit variation gv⊤ Ē δγ where gv = ∆w + ẑv. Thus, the local fitness balance
reads

δ g = zc
⊤ δγ + zv

⊤
Ē δγ. (S11)

Alternatively, the fitness balance can be written in terms of systemic effects

δ g = zc
⊤CS

γ
δγ + zv

⊤ CJ
γ
δγ. (S12)

where CS
γ
and CJ

γ
are the control matrices with respect to virtual concentration variations δγ. By equating both

expressions and omitting δγ, we obtain

[zc⊤ CS
γ
+ zv

⊤ CJ
γ
]− zc

⊤ = gv⊤ Ē. (S13)

This is the compound rule

pc⊤ = gv⊤ Ē. (S14)

S1.3 Metabolic economics requires reversible rate laws

If a model contains irreversible rate laws, there may be enzymes that catalyse a flux but have no control over
it. This is a paradoxical situation, and in metabolic economics, it could lead to paradoxical results. As an
example, consider a linear pathway with a flux objective (Figure S2). If the first rate law is irreversible (and
not allosterically regulated), the other enzymes have no flux control and their enzyme benefits vanish. A virtual
supply of intermediates could not slow down the first reaction and would directly add to the pathway flux, so
all intermediates have the same economic potential as the end product. This is surprising, but agrees with the
vanishing enzyme benefits. Since enzyme benefits and costs must be balanced, all enzyme levels except for the
first must vanish, so there cannot even be a flux: in brief, the model has no enzyme-optimal steady state1. In
models with reversible rate laws only, this would not occur: each enzyme would have some flux control, and
supply fluxes of the downstream metabolites would contribute more strongly to the production objective, so the
economic potentials would increase along the pathway. To ensure this, models in metabolic economics should
only contain reversible rate laws.

S2 Extensions of metabolic economics

Metabolic economics as described in the article makes some simplifying assumptions that limit its use. We shall
now drop some of them to extend the theory.

1If we optimise the enzyme levels numerically, all enzyme levels except for the first will decrease until a flux imbalance makes the

steady state break down. In any case, the steady state will be disrupted before costs and benefits can become balanced.
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(a) (b)

w w w

All intermediates have equal potentialsOther enzymes provide no benefit
Effect of irreversible reaction: Effect of irreversible reaction:

Irreversible reaction:
(i) Rate is insensitive

to product level

(ii) Virtual influx adds to flux

(iii) Intermediates have the same
economic potential as the product

without slowing it down exclusive flux control no flux control, no benefit
Other reactions:

Figure S2: Kinetic models in metabolic economics must have thermodynamically feasible, reversible rate laws.
The example shows why. (a) Simple pathway with flux objective. If the first rate law is irreversible, the other
enzymes have no flux control and therefore provide no benefit. In enzyme-optimal states, their levels would have
to vanish, which would make the flux break down. (b) Also caused by the irreversible reaction, supply fluxes would
directly add to the pathway flux (instead of slowing down the upstream reactions, as usually). All intermediates
have to same economic potential as the end product, which agrees with the vanishing enzyme demands between
them. This paradoxical effect can be avoided by banning irreversible rate laws.

S2.1 Isoenzymes

So far, we assumed that each reaction is catalysed by a single specific enzyme. In reality, several proteins may
catalyse one reaction (isoenzymes) and a single enzyme may catalyse several reactions (unspecific enzyme). In
models, isoenzymes can be described by separate reactions showing the same sum formula and direct flux demand.
Summing over the reaction balances (indices l for isoenzymes), we obtain the joint reaction balance (index L)

[zvL +∆wL] vL =
∑

l∈L

hu
l ul (S15)

If the enzymes are not involved in any other reactions, we can replace them by a single enzyme with level

uL =
∑

ul and enzyme price hu
L =

∑
l
hu

l ul∑
l
ul

.

S2.2 Unspecific enzymes

Unspecific (or multifunctional) enzymes require a change in the reaction balance equation. Consider an enzyme
(index l) that catalyses several reactions (indices j ∈ J(l)). In the reaction balance, we sum over all enzyme
benefits arising from the different reactions:

∑

j∈J(l)

[∆wj + zvj
] vj = hul

ul. (S16)

The engagement in several reactions has two effects. First, if all reactions j ∈ J show positive enzyme benefits,
the enzyme cost will be higher than for an enzyme catalysing only a single reaction. This is plausible: since more
substrates compete for the enzyme, a higher total enzyme level is needed to catalyse all reactions, which leads
to a higher cost. Second, some of the reactions may have a negative benefit, but can still be active if the same
enzyme catalyses other reactions with a strong positive benefit.

S2.3 Conserved moieties and gauging of economic potentials

Some metabolic models contain conserved moieties. For instance, if ADP and ATP are interconverted, but not
individually produced or consumed by any reaction, the sum of their concentrations will be constant in time. Such
conserved moieties are associated with left-kernel vectors of the internal stoichiometric matrix N.

Metabolites forming in a conserved moiety have dependent concentrations. To account for this in MCA and
metabolic economics, we pick a set of independent metabolites (concentration vector cind), which uniquely
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determine all metabolite concentrations. The concentration changes of all metabolites can then be written as
dc/dt = Ldcind/dt, with a link matrix L satisfying N = LNR.

In metabolic economics, we consider conservation relations involving not only internal, but also external metabo-
lites. Therefore, we define conserved moiety vectors with respect to the full stoichiometric matrix Ntot, satisfying
g
⊤Ntot = 0. For metabolic economics, conserved moieties have several consequences:

1. The economic potentials of internal metabolites are defined by virtual supply fluxes. If a metabolic model
contains linear conservation relations, these influxes must not affect the conserved moieties (otherwise they
the state would become non-stationary). A consistent definition of economic potentials for this case is as
follows: The supply fluxes need to have the form ϕtot = Lϕind with supply fluxes ϕind for independent
metabolites. In the definition, this yields the economic potentials for independent internal metabolites,
while the dependent internal metabolites have vanishing economic potentials.

2. When we define economic potentials in kinetic models, the definition is unique but refers to a specific choice
of independent metabolites. However, there remains some gauge freedom: in the reaction balance, economic
potentials do not appear separately, but only in the form of differences along reactions. If metabolites form
a conserved moiety, their economic potentials can be gauged without affecting the balances ∆wl, and
therefore the balance equation. Adding a conserved moiety vector g to the economic potential vector

(w → w + g), does not change the economic potential balances because Ntot⊤[w + g] = Ntot⊤w. If
economic potentials are obtained “experimentally”, it is important to note that this gauging freedom exists,
and that the “absolute” economic potentials within conserved moieties have no influence on enzyme usage.

There is also a gauge freedom for metabolites that do not participate in active reactions, and in cases where the
flux distribution consists of disconnected parts (not connected by any internal nor external metabolites).

S2.4 Enzyme optimisation under constraints

The fact that enzyme levels cannot be negative is implemented in metabolic economics as a constraint ul ≥ 0.
However, we may consider more constraints, for instance that metabolites like ATP must stay above some minimal
level. Minimal values for fluxes, ranges for concentrations, and bounds on the total enzyme level or on certain
enzyme fractions (e.g., enzymes in mitochondrial membranes [12]) can be written as linear inequalities

Mv v ≥ bv, Mc c ≥ bc, Mu u ≥ bu. (S17)

In an enzyme-optimal state, some of these inequalities will be active and can be treated like equality constraints.
With Lagrange multipliers (in vectors λv, λc, and λu), the constrained optimisation problem reads

min
!
= f(u) + λ⊤

v Mv J(u) + λ⊤

c Mc S(u)− λ⊤

u Mu u. (S18)

The resulting cost-benefit balance resembles Eq. (3), but with gain vectors zv and zc replaced by effective gain
vectors zv′ = zv +M⊤

v λv and zc′ = zc +M⊤

c λc, and with the enzyme price vector hu replaced by an effective
vector hu′ = hu +M⊤

u λu. The effective vectors do not only represent actual gains and prices, but also effective
gains and prices caused by the constraints.

S2.5 Inactive enzymes

How do inactive reactions fit into metabolic economics? In an enzyme-optimal state, reactions are inactive if
expressing the enzyme would not pay off, i.e. if already at small expression levels, the enzyme cost exceeds the
benefit. The case in which an enzymes are inactive, but their costs and benefits are exactly balanced, is unlikely
and can be ignored. Instead of a cost-benefit balance (3), inactive reactions (vl = 0) satisfy an inequality
∂g
∂ul

< ∂h
∂ul

. The difference ∂g
∂ul

− ∂h
∂ul

is called economic stress. Since gul = gvl
∂vl
∂ul

, we obtain an economic

imbalance gvl < hu
l (

∂vl
∂ul

)−1. Inactive reactions in an enzyme-optimal state will remain inactive under infinitesimal
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perturbations (e.g. virtual enzyme changes). Thus for most practical purposes, inactive reactions can simply be
omitted from the models. The gain conditions (6) and (7) (which underly most formulae in metabolic economics)
do not apply if some of the reaction fluxes vanish. To make them applicable, we omit the inactive reactions from
the network and study only the active region. The central formulae – the gain conditions and economic balance
equations – hold only for complete flux distributions, but can be applied to incomplete flux distributions after the
inactive reactions have been omitted. In the formulae, matrices like N,K,L, Ē and the test modes k have to
refer to the active region. To justify why reactions are inactive in enzyme-optimal states, we can assume that
their enzymes are very costly.

S2.6 Leaky enzyme expression

There is another way to model inactive reactions: we assume that enzyme levels cannot be shut down completely.
Due to leaky enzyme expression, there remains a small enzyme level ε, whose complete suppression would be
difficult. In a model, this is expressed by an extra cost term hleak(u), which rises as the enzyme level becomes
very small. For instance, we may set hleak(u) =

∑

l ε
2/ul with the gradient hleak

ul
= −(ε/ul)

2. The new fitness
function, including this cost term, diverges for ul → 0 and has no boundary optima, but an internal optimum

with positive (possibly very small) enzyme levels. From the optimality condition max
!
= g(u)− h(u)− hleak(u),

we obtain the cost-benefit balance

gul
− hu

l = hleak
ul

= −(ε/ul)
2. (S19)

The right-hand side approaches zero if ul ≫ ε and negative otherwise (corresponding to boundary optima in usual
metabolic economics). The resulting reaction balance

[ẑvl +∆wl] vl = hu
l ul − ε2/ul (S20)

contains a second cost term, which replaces the Lagrange multiplier associated with the hard constraint ul > 0.
For active enzymes, the normal cost term dominates, but for inactive enzymes the stress term becomes important.

S2.7 Non-optimal states and economic imbalance

In the reaction balance Eq. (11), we assume that costs and benefits of active enzymes are balanced. We can also
model non-optimal states, i.e. states in which the reaction balance is violated. For example, if an enzyme (index
l) has been knocked down, its level will be below the optimal value, even if other enzyme levels are adjusted to
buffer the price. In other cases, enzymes may show non-optimal levels directly after an external change. The
mismatch between optimal and actual enzyme costs is called economic stress. To describe non-optimal states,
we assume that non-optimal enzymes satisfy an inequality

[ẑvl +∆wl] vl 6= hu
l ul. (S21)

It states that a change in regulation – if it were possible – would be profitable. We can formally replace this
inequality by a modified reaction balance

[ẑvl +∆wl] vl = hu
l ul + y∆l (S22)

with the economic stress y∆l = ∂f/∂ul = [ẑvl +∆wl] vl − hu
l ul. Here hu

l is the actual cost of the enzyme; the
economic stress tells us how strongly the reaction balance is violated. If the enzyme level is too low, the economic
stress will be positive; if the level is too high, it is negative.

S2.8 Non-enzymatic reactions

Kinetic models with non-enzymatic reactions and dilution So far we assumed that all chemical reactions
were catalysed by enzymes, which makes them directly controllable. In reality, some reactions happen sponta-
neously, ranging from fast protonation and deprotonation of acids to the damage of proteins or DNA by free
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radicals. Moreover, all metabolites in growing cells are diluted: if metabolites are described by concentrations,
dilution acts as an effective degradation, with a rate constant κ given by the cell growth rate. In metabolic eco-
nomics, non-enzymatic processes require a change in the formulae: for instance, we saw that economic potentials
are typically rising along synthesis pathways. If the end product is diluted, the dilution reaction has a negative
balance of economic potentials, so the flux distribution looks futile. However, the flux may be needed to keep the
end product at a constant concentration (to meet the concentration gain).

If spontaneous reactions or dilution exist, fluxes and concentrations, economic potentials and loads become
coupled. To describe this, some of the equations of metabolic economics need to be modified. We consider
models with non-enzymatic reactions and dilution (where dilution fluxes are not part of the flux vector v). The
system equations

dc/dt = Nenz venz +Nnon vnon − κ c (S23)

contain terms for enzymatic and non-enzymatic reactions as well as dilution. The flux vector v =
(

v
enz

vnon

)

, the

stoichiometric matrix N = (Nenz|Nnon), and the internal elasticity matrix Ē =
(

Ē
enz

Ēnon

)

are split accordingly. The

Jacobian matrix with dilution can be split into three terms: Mdil = Menz +Mnon − κ I. It contains the terms
Menz = Nenz

R Ēenz L (for enzymatic reactions), Mnon = Nnon
R Ēnon

c L (for non-enzymatic reactions) and −κ I
(for dilution). Metabolic control coefficients for such systems, as well as their summation and elasticity theorems
are given in SI P1.1.

Demand conditions with dilution The gain conditions for models with dilution read (proof see P1.3)

K⊤ zv = K⊤Dg(y)v−1

−L⊤ zc − κ (LMdil−1
)⊤ zc∗ = (Ē L)⊤ Dg(y)v−1. (S24)

where zc∗ = Ē⊤ zv + zc. The flux gain condition remains unchanged, while the concentration gain condition

contains the extra term −κ (LMdil−1
)⊤ zc∗.

Demand conditions with non-enzymatic reactions For the gain conditions as shown in the paper, all reactions
in a flux distribution must be active and enzyme-catalysed. Non-enzymatic reactions cause no direct enzyme costs,
but they also cannot be blocked even if they degrade valuable metabolites, and may therefore require costly enzyme
investments in other places. This must be captured somehow by the gain conditions. Non-enzymatic reactions
give rise to an extra term in the flux gain condition. For simplicity, let the list of reactions be ordered (enzymatic
reactions first, then non-enzymatic reactions). Thus, flux vectors can be split into subvectors v =

(

venz

vnon

)

. We
require optimal enzyme levels, consider the cost-benefit balance (3), and obtain flux and concentration gain
conditions for the active enzymatic reactions (Proof in section P1.4):

k · zv − k⊤
nong

v
non = k⊤

enzDg(y)v
−1

enz (S25)

−(Ē L)⊤non g
v
non = ((Ē L)enz)

⊤Dg(yenz)v
−1
enz. (S26)

The enzyme cost vector y = Dg(u)hu refers to the enzymatic reactions, and gv
non = [∆wc

non + zvnon]. Let us
focus on the flux gain condition (S27). The active non-enzymatic reactions contribute an additional term. With
k · zv = kenz · z

v
enz + knon · zvnon, we can rewrite the equation as

kenz · z
v
enz − knon ·∆wc

non = k⊤
enzDg(y)v

−1

enz

⇒ k ·

(

zvenz
−∆wc

non

)

= k⊤
enzDg(y)v

−1

enz. (S27)

Equations (S27) and (S29) differ from the usual flux gain condition in two ways: aside from the term for enzyme-
catalysed reactions, there is a term describing how non-enzymatic reactions contribute to the benefit. To see what
it does, we consider two special cases: (i) For test modes k containing only enzymatic reactions, we reobtain the
original flux gain condition. (ii) After inserting a mode v as its own test mode, Eq. (S27) leads to the balance

∑

l

yl = v · zv − vnon · [∆wnon + zvnon]
⊤. (S28)
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Compute rate constants

Test second−order conditions
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Enzyme−balanced
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Metabolic network
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thermodyn. constraints

(iii)

(ii)

(i)
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Investment balance equation
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Economic potentials,
chemical potentials

Concentrations, 
enzyme costs

Flux minimisation

Economical, thermodynamically
feasible flux mode

Figure S3: Algorithm for model construction: (i) Given the metabolic network, an economical, thermodynamically
feasible flux distribution is determined (e.g. by flux cost minimisation). (ii) Consistent economic potentials and
enzyme costs (satisfying the reaction balance) and (iii) reaction elasticities and economic loads (satisfying the
compound balance), are computed as described in SI S3. (iv) The rate constants are computed from the reaction
elasticities. (v) Dynamic and economic stability (the second-order conditions) have to be checked separately.

Thus, the total enzyme cost equals the total flux benefit minus a flux benefit caused by non-enzymatic reactions.
If this term is positive, enzyme costs can be saved; if it is negative, the enzyme costs will increase. Dilution
reactions can be treated similarly as part of the vector vnon.

S3 Enzyme-balanced kinetic models reconstructed from economical

fluxes

Enzyme-optimal models and enzyme-optimal states In a kinetic model with optimal enzyme levels, the
state variables vl and ci, the economic potentials wi and loads pci , and the gain vectors zv and zc will satisfy
conditions like the cost-benefit balance, gain conditions, absence of futile modes, and the economic balance
equations. In practice, optimising the enzyme levels in kinetic models may be difficult, and the state obtained
fofrom a model may show implausible metabolite concentrations and fluxes. To construct, instead, enzyme-
optimal states matching given flux data, we would have to fit the model parameters, which would drastically
increase the numerical effort. As a practical alternative, we may determine a consistent set of state variables (vl,
ci, µi, E

vl

ci , z
v
l , z

c
i , and wc

i ), and then construct a kinetic model that realises this state. In this construction, the
state variables need to satisfy all economic constraints. Once all state variables have been determined, solving for
the necessary rate constants is relatively easy.

Necessary and sufficient conditions for enzyme-optimal states To construct enzyme-balanced models with
predefined steady states, let us revisit the various conditions for economic enzyme usage. Some conditions entail
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each other; some are necessary, and some sufficient for enzyme-optimal states. To distinguish different cases, we
call flux distributions enzyme-optimal, enzyme-balanced, or economical.

1. Enzyme-optimal A flux distribution v is called enzyme-optimal if it appears in an enzyme-optimal metabolic
model satisfying four conditions: (i) the rate laws are reversible and the kinetic constants satisfy Wegscheider
conditions and Haldane relations [11]; (ii) the model has a steady state with flux distribution v; (iii) this
steady state is stable, i.e. all eigenvalues of the Jacobian matrix (for independent metabolites) have negative
real parts; (iv) the state is economically stable, that is, the enzyme levels must represent a local maximum
of the fitness function: in the subnetwork of active reactions, the fitness gradient fu has to vanish and the
fitness curvature matrix Fuu must be negative definite.

2. Enzyme-balanced A flux distribution is called enzyme-balanced if it appears in a kinetic model satisfying
conditions (i) and (ii), as well as the cost-benefit balance (3). The steady state may be unstable and
the enzyme levels may represent any extremum of the fitness function (where fu = 0), not necessarily an
optimum (e.g. Guu can have positive eigenvalues). Enzyme-balanced flux modes satisfy the conditions (6)
and (7) and the economic balance equations (11) and (14).

3. Economical A flux distribution is called economical if it satisfies the flux gain condition (6) on its active
region with a positive cost vector y. According to theorems 3 and 4, this is equivalent to any of the
following conditions: (i) v satisfies the reaction balance (11) for some economic potentials wc

i and positive
enzyme costs yl; (ii) v is free of non-beneficial modes; (iii) v is the solution of a non-flux-enforcing flux
cost minimisation problem.

Constructing kinetic models in enzyme-balanced states A kinetic model with optimal enzyme levels satisfies
all criteria stated above. However, does also the opposite hold? Can any set of state variables that satisfy these
criteria be realised by an enzyme-optimal metabolic model? If this were true, we could choose steady state
variables – metabolic fluxes, economic potentials, and so on – and directly construct and screen models that
comply with them. A construction of enzyme-balanced model is possible and shows under which conditions
economical flux distributions can be kinetically realised.

A method for model construction is shown in Figure S3. In the algorithm, K and L are defined by the network
and gain vectors zv and zc are also predefined. The steady-state variables (fluxes, concentrations, economic
potentials, enzyme costs, economic loads, and reaction elasticities) are chosen one after the other, in agreement
with the ones chosen before. Altogether, the following constraints have to be satisfied: v must be stationary,
thermodynamically feasible and complete, Ē must be consistent with v and the chemical potentials [11], yl must
be positive, and both economic balance equations must be satisfied. In practice, we proceed as follows:

1. We use flux analysis to compute an economical flux distribution v, metabolite levels ci, and economic
potentials wi, to satisfying the thermodynamic constraints and the reaction balance. With a production
objective (defined by the vector zv), the flux distribution must be free of non-productive and non-beneficial
modes; we can find such flux distributions, for instance, by flux cost minimisation. Linear constraints for
feasible logarithmic concentrations and economic potentials are obtained from the previously chosen fluxes.

This yields concentrations ci, standard chemical potentials µ
(0)
i , economic potentials wc, and enzyme costs

y that satisfy the reaction balance.

2. In the second phase, we need to determine the rate laws. To ensure that the model will satisfy the compound
balance (14), we choose a vector zc and determine reaction elasticities satisfying the compound balance.
To ensure thermodynamically feasible reaction elasticities, we represent the elasticities by saturation values
as described in [11]. To avoid full enzyme saturation, we limit the saturation values, for instance to a range
βli < 0.9. It may not be possible to satisfy the compound balance for a predefined vector zc. However, if
there is no solution, we may allow deviations from our initial vector zc, which we penalise by quadratic costs.
Then, a solution with zc as close as possible to the predefined values can be obtained from a quadratic
programming problem. Finally, from the saturation values we can compute the rate constants and obtain a
consistent model.
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Constructing enzyme-optimal models To show that a flux distribution is enzyme-optimal (and not only
enzyme-balanced), we need to realise it by an enzyme-optimal kinetice model. The model will have to satisfy the
second-order conditions, i.e. the steady state must be stable (i.e., the Jacobian matrix for independent metabolites
must be negative definite) and economically stable (the fitness curvature matrix must be negative definite). The
first criterion, stability of the steady state, is not guaranteed by our construction, but we can use it as an additional
criterion when choosing the reaction elasticities. The second criterion, negative fitness curvatures, can be satisfied
by assuming a strongly curved investment function h(u), giving rise to a strongly negative curvature matrix Huu;
however, large curvatures may not be justifiable biologically. By running the second phase of the algorithm
with sampled elasticities, we obtain an ensemble of enzyme-balanced models realising one set of state variables
(see [11]). If one of these models satisfies the second-order conditions, the flux distribution is enzyme-optimal,
otherwise the question remains open.
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