Metabolic control analysis with temporal parameter fluctuations

Wolfram Liebermeister
lieberme@molgen.mpg.de
Max Planck Institute for Molecular Genetics, Ihnestr. 73, 14195 Berlin. www.molgen.mpg.de/~ag klipp
BCB - Berlin Center for Genome Based Bioinformatics

Abstract

Metabolic response coefficients describe how dynamic properties of metabolic systems - like steady state concentrations - respond to small, time-independent changes of the kinetic parameters. We extend this concept to temporal parameter fluctuations and define spectral response coefficients that relate Fourier components of concentration time courses to Fourier components of the underlying parameters. The spectral response coefficients describe forced oscillations of the concentrations and fluxes, caused by small harmonic oscillations of single parameters. They depend on the driving frequency and comprise the relative phases and amplitudes. To illustrate the basic idea, only first-order response coefficients for metabolic concentrations are addressed on this poster.

Metabolic control analysis of steady states

Stable metabolic system: Each choice of the kinetic parameters (enzyme activities, Michaelis constants, etc.) leads to certain steady state concentrations

Expand the stationary concentrations $S_{l} \quad$ Metabolic response coefficients (see [2]) after a parameter change $\Delta \mathbf{p}$:

$$
S_{l}\left(\mathbf{p}^{0}+\Delta \mathbf{p}\right) \approx S_{l}\left(\mathbf{p}^{0}\right)+\sum_{m} R_{l m}^{S} \Delta p_{m}
$$

$$
R_{l m}^{S}:=\frac{\partial S_{l}(\mathbf{p})}{\partial p_{m}}
$$

Computation:

$\begin{array}{lll}\text { - Consider the stationarity condition } & 0=\dot{\mathbf{x}}=\mathbf{N v}(\mathbf{x}, \mathbf{p}) & v_{k} \text { : kinetics functions } \\ \text { - Differentiation by } \mathbf{p} \text { yields } & \mathbf{R}^{\mathrm{S}}=-\left(\mathbf{N} \epsilon_{\mathrm{s}}\right)^{-1} \mathbf{N} \epsilon_{\mathrm{p}} & \\ \text { with stoichiometric matrix } \mathbf{N} \text { and reaction elasticities }\left(\epsilon_{\mathrm{s}}\right)_{k l}:=\frac{\partial v_{k}}{\partial x_{l}}, \quad\left(\epsilon_{\mathrm{p}}\right)_{k m}:=\frac{\partial v_{k}}{\partial p_{m}}\end{array}$

Spectral response coefficients

Parameter fluctuations:

Instead of parameter vectors, we now consider vectorial time courses

Describe the time courses by their Fourier spectrum.

Computation:

$\begin{aligned} & \text { - Consider the system equation } & \dot{\mathbf{x}} & =\mathbf{N v}(\mathbf{x}(t), \mathbf{p}(t)) \\ & \text { - Fourier transformation yields } & i \omega \hat{\mathbf{s}}(\omega) & =\mathbf{N} \mathbf{j}(\omega)\end{aligned} \quad$ j: fluxes

- Differentiation by pyields $\quad \mathbf{R}^{\mathrm{S}}(\omega, \alpha)=-\left(\mathbf{N} \epsilon_{\mathrm{s}}-\mathrm{i} \omega \mathbf{I}\right)^{-1} \mathbf{N} \epsilon_{\mathrm{p}} \delta(\omega-\alpha)$
- The spectral response coefficients are complex and frequency-dependent.
- They describe the response to a harmonic oscillation of a parameter.
- They may show resonance near Hopf bifurcations.
- To account for conservation relations \Rightarrow Restriction to independent metabolites (see [5])

Example: Glycolysis model

We start with the glycolysis model from Hynne et al. (2001) (see [3]) at a stable steady state (low external glucose concentration $\mathrm{Glcx} 0=5.0$).

The storage reaction (parameter k_{22}) is perturbed by a harmonic oscillation of frequency $\alpha=2 \pi /(10 \mathrm{~min}) \Rightarrow$ Forced oscillations of all concentrations.

Spectral response coefficients of concentrations and fluxes

Glycolysis network (shown by nodes and straight lines) Arrows represent the complex values of the response co efficients.

Time courses for general perturbations can be computed via Fourier synthesis.

Propagation of stochastic fluctuations

Stochastical fluctuations due to small particle numbers can be described by the chemical Langevin equation (see [1])
$\frac{\mathrm{d}}{\mathrm{d} t} \bar{x}_{i}(t)=N_{i k} a_{k}(\overline{\mathbf{x}}(t))+N_{i k} \sqrt{a_{k}(\overline{\mathbf{x}}(t))} \eta_{k}(t)$
\bar{x}_{i} : molecule numbers
$x_{i}:$ molecule numbers
$a_{k}:$ propensity functions
$a_{k}:$ propensity functions
$\eta_{k}:$ white standard noises
After linearisation around the mean concentrations \mathbf{x}^{0}, the fluctuations can be described by virtual noise parameters with elasticities
$\epsilon_{\mathrm{p}}:=(n \text { liters } / \mathrm{mol})^{-1 / 2} \operatorname{diag}\left(\mathbf{v}\left(\mathbf{x}^{0}\right)\right)^{1 / 2}$
n : average molecule number at $1 \mathrm{~mol} /$ liter, n liters $/ \mathrm{mol}=N_{\mathrm{A}} \Omega$
Ω : system volume
$\Omega:$ system volume
N_{A} : Avogadro's constant

Concentration fluctuations are quantified by their spectral densities:

$$
\mathcal{S}^{\mathrm{S}}(\omega)=R^{\mathrm{S}}(\omega) R^{\mathrm{S}^{\dagger}}(\omega)=n^{-1}\left(\mathbf{N} \epsilon_{\mathrm{s}}-\mathrm{i} \omega\right)^{-1} \mathbf{N} \operatorname{diag}\left(\mathbf{v}^{*}\right) \mathbf{N}^{T}\left(\mathbf{N} \epsilon_{\mathrm{s}}+\mathrm{i} \omega\right)^{-1^{T}} \cdot \text { liters } / \mathrm{mol}
$$

Example: Minimal reaction system (3 substances) with Hopf bifurcation [6]
Stable steady state in a cubic volume $(3.9 \mathrm{~nm})^{3}$ containing, on average, $n=100$ molecules of each substance \Rightarrow Spontaneous fluctuations of concentrations

Note the resonance - below the bifurcation- near the oscillation frequency $\omega_{0} \approx 0.75 \mathrm{~s}^{-1}$ of the bifurcation point.

Not shown here...

Based on the same idea, it is also straightforward to compute (see [4])

- Response coefficients for fluxes
- Second-order response coefficients
- Control coefficients (1 $1^{\text {st }}$ and $2^{\text {nd }}$ order)
- Summation and connectivity theorems

[1] D. T. Gillespie. The chemical Langevin equation. J. Chem. Phys., 113(1):297-306, 2000
[2] R. Heinrich and S. Schuster. The regulation of cellular systems. Chapman \& Hall, 1996.
[3] F. Hynne, S. Danø, and P.G. Sørensen. Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys. Chem., 94:121-163, 2001. [4] W. Liebermeister. Metabolic response to temporal parameter fluctuations in biochemical networks. submitted to J. Theor. Biol. [5] C. Reder. Metabolic control: a structural approach. J. theor. Biol., 135:175-201, 1988. [6] T. Wilhelm and R. Heinrich. The smallest chemical reaction systems with Hopf-bifurcation. J. Math. Chem., 17:1-14, 1995.

References

