



# A theory of optimal differential gene expression

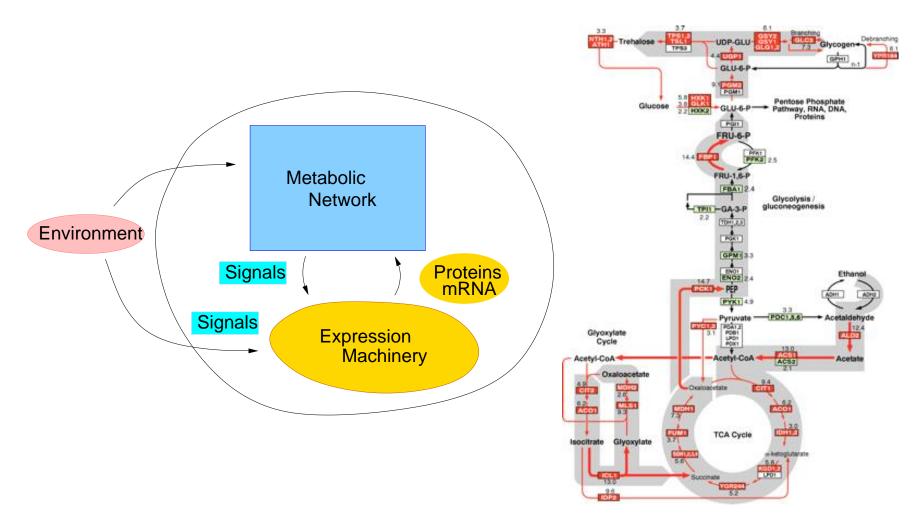
Wolfram Liebermeister, Edda Klipp, Stefan Schuster, Reinhart Heinrich

#### **IPCAT2003**

Fifth international workshop on information processing in cells and tissues

September 10, 2003

#### Schematic view of the cell



DeRisi et al., 1997

## A model for optimal gene expression patterns

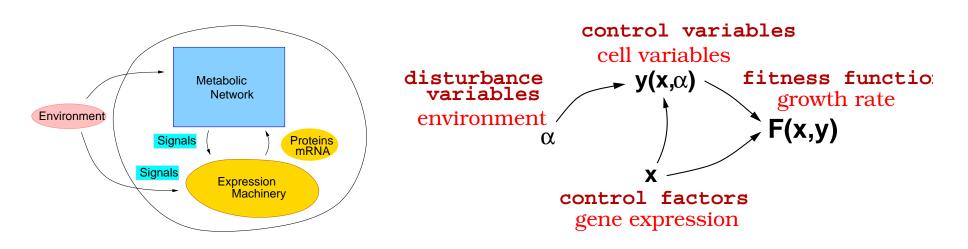
#### Hypotheses for the Model

• Genes act as regulators.

 $\rightarrow$  Differential gene expression ensures optimal control of cell processes.

- Genes can control several fitness-relevant processes at a time Gene expression itself is costly
   → Find optimal compromise
- Evolution has physically realised an optimal expression behaviour in the signalling network and in the regulatory sequences.

## The Model



#### The optimality principle

Expression x behaves always such as to maximise the fitness  $F(x, y(x, \alpha))$ .

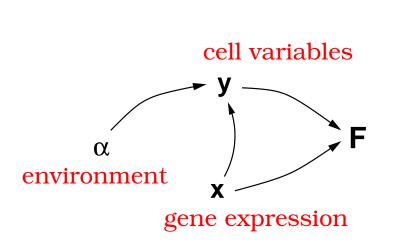
#### **Differential expression**

What is the best reaction of gene expression to perturbations?

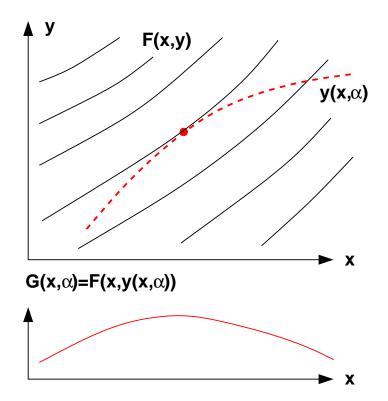
#### Here

Consider stationary states, small perturbations

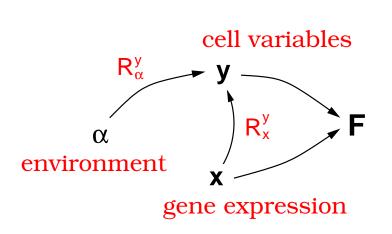
#### **Optimal response to perturbations**



Effective fitness 
$$G(x, \alpha) = F(x, y(x, \alpha))$$



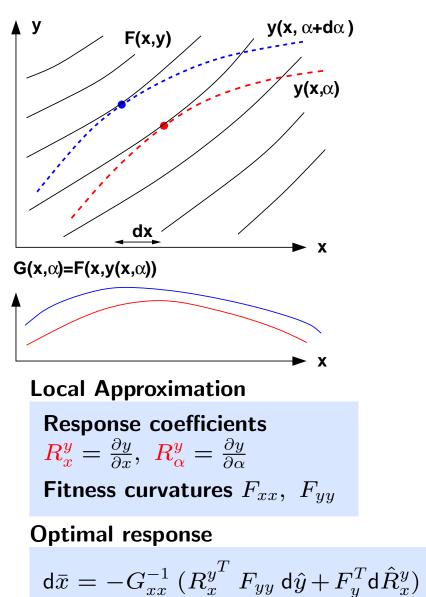
#### **Optimal response to perturbations**



Effective fitness 
$$G(x, \alpha) = F(x, y(x, \alpha))$$

#### **Optimal response to perturbations**

- Locally optimal state
- Consider a small perturbation of y or x
- Find the response dx̄ for reaching a new optimal state.
- Optimality condition:  $dG_x = 0$

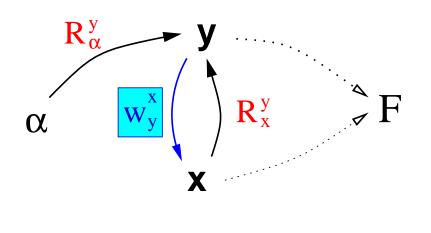


#### **Results: Consequences from the optimality principle**

- 1. Optimal linear gene programs
- 2. Symmetric response to gene deletions
- 3. Expression patterns and response coefficients
- 4. Sum rules for the control of metabolism

# (1) Optimal linear gene programs

The optimal response to perturbations  $d\alpha$  can be realised by a linear feedback mechanism (gene program).



$$dy = R^y_{\alpha} d\alpha + R^y_x dx$$
$$dx = w^x_y dy$$

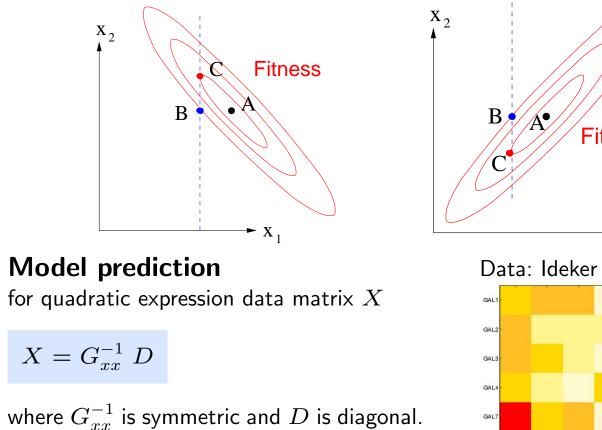
**Optimal feedback** 

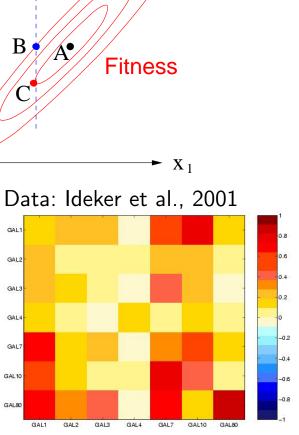
$$w_y^x = -F_{xx}^{-1} R_x^{y^T} F_{yy}$$

- Large influence of a gene  $\rightarrow$  strong feedback
- Similar influence of genes  $\rightarrow$  common feedback

# (2) Symmetric response in deletion experiments

The expression of a gene is decreased by a deletion:  $x_i \rightarrow x_i + d\hat{x}_i$ .

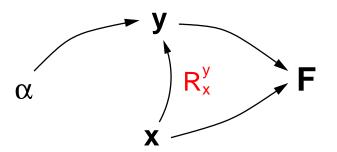




# (3) Linear superposition of response coefficients

Optimal regulation profile to yield change dy:

$$\mathsf{d}\bar{x} = F_{xx}^{-1} \; \frac{R_{x}^{y^{T}}}{R_{x}^{y}} \; (R_{x}^{y} \; F_{xx}^{-1} \; R_{x}^{y^{T}})^{-1} \; \mathsf{d}y$$



# Assumption: $F_{xx}$ is isotropic (scalar) $\rightarrow \begin{pmatrix} d\bar{x} = R_x^{y^T} dm \\ = R_x^{y_1^T} dm_1 + R_x^{y_2^T} dm_2 + ... \end{pmatrix}$

Optimal expression profile is a linear combination of response coefficient profiles.

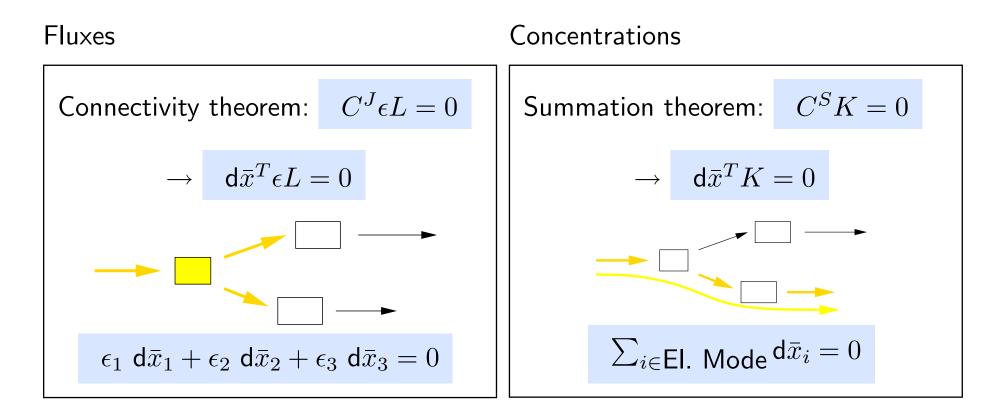
#### **Prediction**:

Response coefficient profiles should appear as linear components in expression data.

# (4) Optimal control of metabolic systems

From the **theorems of metabolic control theory** follow relations between the optimal expression profiles and the structure of the metabolic network.

Supposed, the fitness depends only on ...



# Conclusions

- Assumption: Expression patterns serve as regulators of cell functions.
- Optimal gene expression patterns are predicted from (1) a cell model (2) a fitness function (3) external perturbations.
- Small perturbations: gene functions were described by response coefficients from metabolic control analysis
- General properties of expression patterns were derived, in particular relations to the metabolic network.
- Linear components within optimal expression profiles describe control of distinct fitness-relevant cell variables.
  → consistent with linear statistical models (e.g., PCA or ICA)