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Abstract

We investigate a model of optimal regulation, intended to describe large-scale differential gene expression. Relations between
the optimal expression patterns and the function of genes are deduced from an optimality principle: the regulators have to
maximise a fithess function which they influence directly via a cost term, and indirectly via their control on important cell
variables, such as metabolic fluxes. According to the model, the optimal linear response to small perturbations reflects the
regulators’ functions, namely their linear influences on the cell variables. The optimal behaviour can be realised by a linear
feedback mechanism. Known or assumed properties of response coefficients lead to predictions about regulation patterns. A
symmetry relation predicted for deletion experiments is verified with gene expression data. Where the optimality assumption is
valid, our results justify the use of expression data for functional annotation and for pathway reconstruction and suggest the use
of linear factor models for the analysis of gene expression data.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction tion of distinct cellular processes. Although relations
between gene function and differential expression (or

Differential gene expression can provide informa- the regulatory machinery behind it) have often been
tion about the function of genes. Coregulation of stated, their theoretical justification is usually not an

genes has been related to shared functiBrown issue. We show that such relations can be deduced
et al., 2000)interacting proteingGrigoriev, 2001) or from a principle of optimal regulation.

protein complexegJansen et al., 2002Expression Regulation of cellular processes can be studied
data have been used to reconstruct metabolic path-with respect to both its mechanism and its function.

ways(Zien et al., 2000pnd to annotate gené&hou A particular gene expression pattern, for instance, can

et al., 2002) Expression profiles can be decomposed be attributed to @ausa efficiens, such as a signalling

into linear basis profilegAlter et al., 2000; MacKay pathway, which physically influences the transcript

and Miskin, 2001; Fellenberg et al., 2001; Lazzeroni levels. Accordingly, expression data have been used

and Owen, 2002; Liebermeister, 2002; Moloshok to identify regulatory motifs in the genom@razma

et al., 2002) some of which are related to the regula- et al., 1998; Bussemaker et al., 2000n the other

hand, expression may be explained bgaasa finalis,

"+ Corresponding author. namely the fact that the gene products are needed by

E-mail address: lieberme@molgen.mpg.de (W. Liebermeister).  the cell under the given conditions. Biologists often
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tacitly presume a form of teleonaturalis@llen, lators which control metabolism or which act in mod-
1999) where “needed by the cell” translates to “in- ules. Besides this, predictions for expression data are
creasing the cell’s biological fitness, and thus selected summarisedSection 4is concerned with a linear feed-
for during evolution”. The present analysis of opti- back model that realises optimal regulation, with the
mal regulation is based on the assumption that living evolutionary advantage of regulation, and with a re-
organisms do not only have certain optimality prop- lation between expression and growth in the presence
erties in their basic (healthy) state but also respond to of deletions. The results of this work are discussed
perturbations in an optimal way. They are assumed to in Section 5 The appendix contains a mathematical
reach a state that is optimal under the new conditions, proof and a list of mathematical symbols.

thus partly compensating for the impairment due to

the perturbation. This assumption is corroborated by

a huge number of observations, many of which are 2. Optimal linear regulation of stationary states
well-known. For example, blind people develop an

improved perception of sounds, and the decrease in To illustrate our approach, let us consider how
blood glucose due to starvation is partly compensated metabolic systems are controlled by differential ex-
for by the degradation of glycogen. pression of enzymes. Metabolic fluxes depend on cel-

To assume optimality is certainly an idealisation,
but often used as an approximation of biological real-
ity (Edwards et al., 2002; Heinrich et al., 1987, 1996;
Klipp and Heinrich, 1999; Segre et al., 2008)pti-
mality of flux distributions has been studi@gdwards
et al., 2002; Segre et al., 200nd theoretical pre-
dictions based on optimisation could be validated by
experiment(lbarra et al., 2002)A relation between
the optimal regulation of enzymes and their control
on fluxes has been derived {Klipp and Heinrich,
1999) Optimal control of time-dependent processes
(Pontryagin et al., 1962has been studied intensely,

lular processes that produce or consume metabolites,
on environmental parameters like nutrient supply, and
on parameters influencing the enzymatic activities,
such as temperature. In addition, metabolism is ac-
tively controlled by regulatory processes on different
time scales: while fast responses are realised by acti-
vation and inhibition of enzymes, slow adaptation can
be achieved by adjusting their expression. The linear
influence of enzyme concentratiof on stationary
fluxes J; is quantified by the response coefficients
matrix R,. Metabolic control theoryHeinrich et al.,
1996; Kahn and Westerhoff, 199Bescribes how

and also been applied to control of metabolic systems fluxes respond to changes of enzymes, which may be
(Klipp et al., 2002) We propose a quantitative analysis caused by changes in gene expression. One may also
of optimal differential expression (ANODE) in order ask the inverse question: which enzyme changes are
to formalise intuition about “sensible” expression pat- necessary to achieve a desired metabolic behaviour,
terns: a system of regulatory variablegfor instance, such as homoeostasis or constrained maximisation of
gene transcript levels) affects a system of output vari- fluxes?The answer to this question depends on (1) the
ablesy (seeCornish-Bowden and Céardenas, 1993 control of enzyme activities on metabolism, as studied
such as metabolic fluxes. The states of both systemsby metabolic control analysis, and (2) assumptions
are evaluated by a common fitness functiég, y). about the objectives of the cell, described by a fitness
We study the behaviour of ideal regulators which al- function.
ways adapt their values such as to maximise the local The performance of cellular subsystems can be
fitness. Among the output variables we shall con- rated by their contribution to the evolutionary fithess
sider only the “relevant” ones, namely those which of the organism, that is, the expected long-term repro-
actually play a role for the fitness function. duction of the organism. In a particular environment,
The text is organised as follows: Bection 2 the a few fluxes may effectively determine biomass pro-
mathematical model is presented and optimal regu- duction. For a metabolic system, we may consider a
lation patterns for different types of external pertur- simple fitness functiov(J) scoring only those impor-
bations are derived. A symmetry prediction for gene tant fluxes, and assume that there is an evolutionary
deletion experiments is tested with experimental data. tendency to maximise this function. Such an objec-
In Section 3 we shall study the coregulation of regu- tive function was studied previous(jHeinrich et al.,
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1987) notably the (mathematical) product of the two The linear term describes costs per protein molecule,
independent fluxes in a reaction system representinge.g., for the consumption of amino acids. High rates
glucose metabolism. In the whole cell, many pro- of protein synthesis require additional efforts, for in-
cesses depend on common resources, SO an optimaktance, an increased production of ribosomes, which
compromise must be chosen. The enzyme levels canis punished by the quadratic term.

adapt the metabolic system to external fluctuations Maximising the effective fithess

and will thereby effectively increase the fitness, but

enzyme production itself consumes cellular resources, G(E) = F(E, J(E)) = —y1(E1 + E2)

which can be described by a negative contribution —yo(E1 + E2)? + J(E1, E2) (4)
U(E) to the total fithessF(E,J) = U(E) + V(J).

The optimal behaviour with respect forepresents a ~ With respect toE;, and E» yields unique optimal
compromise between benefit and cqfsich, 1983)  enzyme levelgE1, E3). A small perturbation of the

As a simple example (shown Fig. 1), let us con- ~ parameters, such as the concentrations of external
sider a chain of two chemical reactioig <> S1 <> metabolites or the rate constants, changes the fitness
S, with mass-action kinetics landscape5 (E). The optimum is shifted (sefig. 1,

right), but the enzyme levels can be adapted to reach
v1 = k1E180 — k-1E151 Q) new optimal values.
v2 = k2E281 — k2E2S2 We shall now determine a linear approximation for

the optimal response, written in the differential no-
tation dE. At the local optimum, the gradient of the
fithess function with respect to the enzyme concentra-
tion vanishes

where E1 and E» denote the enzyme concentrations.
At fixed concentrationsy and S», the stationary flux
J = v1 = vp reads

_ E1E2(Sok1ka — Sok—_1k_2) @ 3G
E1k_1+ E2k; 9E,

. 0=Gg=VeG= (5)
A reasonable and frequently used ansatz for the fithess E
function is to use the flux itsel¥’(J) = J (Heinrich 9E>

et al., 1987, 1996; Savinell and Palsson, 199&)ile

the enzyme levels are rated by a negative function The total differential 0fG ¢ can be written asdly =

dG g + Gee dE, where the first term @ describes a
U(E) = —y1(E1+ E2) — y2(E1 + E2)? 3) change due to the parameter perturbation. The second

E k, E. k.
S| = S| 2|8
E k4 Ek »

Fig. 1. Adaptation of enzyme levels. A linear chain of two reactions (left) is controlled by two enzimesd E,. Their performance
is evaluated by a fitness functiaii(E1, E2). In this example, the fitness is given by the stationary fluminus the costd€/(E1, E») of
protein production. The right diagram shows the fithess lands€qig, E>), for two values of the external substreig (solid and dashed
contour lines, respectively). The perturbationSf causes a shift of the optimum, indicated by the arrow.
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term Gee dE reflects an adaptation®l= (dE1dE»)”
of the enzymes, with

392G 392G
IE? IE10E>
Gee = 5 5 (6)
2G 3G

OE20E1  JE3

The optimal adaptation & must ensure thaEq. (5)
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function F(x, y) which, for simplicity’s sake, is as-
sumed to have the additive form (see aReich,
1983; Savinell and Palsson, 1992

F(x,y) = U(x) + V(y) (10)

The gradientF, = V,F(x,y) will be called the
marginal fithess of, in analogy to the marginal util-
ity defined in economicgHenderson and Quandt,
1980) The marginal fitnessF, = V,F(x,y) of x

holds after the perturbation as well, so the respective is defined accordingly. The matricésx and Fyy of

differential dG g has to vanish, and therefore

0= GEEdE-FdGE (7)

(8)

This example illustrates what we shall now tackle in a
general way. A long-term objective is to explain cor-
relations in genome-wide differential expression data.
Calculating the optimal expression values would in
principle require a model of the whole cell. However,

— dE = —GgLdGg

the optimal response to small perturbations can be

predicted from local properties of the model (namely
derivatives) at the initial optimal state, so knowledge

about metabolic response coefficients can be used to

predict the coregulation of genes.
2.1. The mathematical model

The model of optimal regulation proposed in this
section describes biological regulators which control

stationary states. The cell state is described by a set of

output variables that depend on regulatory variables
x and on environmental parameters The symbols
x, v, anda denote vectors. Small changes yfare

expanded as

T
Ay )~ RRD [ ) + L
T YN Aa 2\ Ax

(8 )

Ao
The linear influences of the regulators and the en-
vironment ony are described by the response co-
efficients R and R}, (Heinrich et al., 1996) The
second-order response coefficiel® and R}, de-
scribe the quadratic effects aof and « (Hofer and
Heinrich, 1993) Both x and y are rated by a fithess

AXx

Y
Rya

y
RO(O(

Rix

y
RO{X

(9)

second-order derivatives contain the curvatures of the
fitness function. IfU is a sum of terms depending on
the individual regulators, theRyy is diagonal. Some-
times an “isotropic” case will be considered where
Fyx is a scalar times the identity matrix The effec-
tive fitnessG (x, o) = F(x, y(x, «)) is a function ofx
anda alone, with derivatives

T
Gx(x,@) = Vi F(x, y(x, @) = Fy + Ry Fy
Gxx(x, a) = Vi VI F(x, y(x, @)
T
= Fx+ RY FyRy + T

(11

as Fyy = 0 (seeEq. (10). T represents the tensor
product ()i = (F},)I(Ry)o(){k. It describes an effec-
tive fitness curvature due to the cooperation of regula-
tors, for instance gene products acting in a complex,
such as in metabolic channellin@ornish-Bowden
and Cardenas, 1993)nstead of assuming the cost
term U(x), one could describe the costly side-effects
of gene expression by additional output variabjes
Thex-dependent fitness terfiy would then reappear
as a part offy.

The optimality principle postulates that, for any
given «, the regulators assume a valu@) to reach
a local fitness maximum (sd€g. 2, right). Optimal-
ity at x(or) implies thatG vanishes, s@&, andF, are
balanced according to

F,=—R)F, (12)

To ensure a unique local maximum, the effective
fithess curvature matrixGyx must have negative
eigenvalues, s@yxx is invertible. If the number of

regulators exceeds the number of output variables,

1 Superscripts and subscripts represent variables and derivatives,
respectively. According to the sum convention, terms are summed
over all indices which occur both as superscript and as subscript.
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Fig. 2. Model of optimal regulation. Top left: The system variabjedepend on the environmentand on the regulators. The fitness
function F scores bothx and y. Bottom left: The optimal behaviour can be implemented by feedback signals betwéen: (see
Section 4.). Optimality (dotted arrows) is ensured by an appropriate choice of the feedback coeffiRjerRRéght. Optimal response to
a perturbation ofy. A one-dimensional case is shown while in genexaly andy are multidimensional. For fixed environmemt y is a
function y(x, ) of x (shown by dashed lines, for two values@f The slope of this line is called the response coefficight The fitness
function F(x, y) (shown by solid contour lines), evaluated on the constraint line, yields the effective fiiiiess) (shown below). After
a change ofx, x has to adapt itself to reach again an optimal state (dots) maximising

then R;‘{TFWR)’Q in Eq. (11) has some vanishing 2.2. Adaptation to a perturbation of output variables

eigenvalues, but by an appropriate choiceligk), a
maximum can be ensured.

In the following, we shall study regulators in an .
optimal state which encounter a perturbation: two do. If the Eegulators remamedAconsta;nbc(d: 0), y,
scenarios are studied, namely perturbations dfy Fy, and Ry would’ change _by 8= Ryde, dF, = .
perturbation ofa, and perturbations of individual ~FyRa O, and dky, respectively, where the latter is
regulatorsy;. In both cases, the optimal response d  defined by the tensor produedRy)! = (R3)jdef.
to maximise & will be calculated in a local approx- In this text, two sorts of differentials will be dis-
imation. Concerning the initial optimal state, some tinguished: those with a circumflex (e.gj)ddenote
simplifying assumptions are made: locally, all values changes due to an external perturbation for fixed
of y can be reached by an appropriate choicerof ~ While those with a bar (e.g. )i contain the additional
that is, R} has full row rank. This implies that the effectofan optimal respons&dOur objective is to de-
dimension ofy does not exceed the dimension of termine d to maximise the fitness (x + dx, « +da).

+ and thatR;‘;Fg(lR)ycT is invertible. In general, the This requires that &, must vanish, leading to (proof:

fithess function may depend on additional parame- Appendix A).

f[ers, and the output variables may not be cont_rqlled dx = _G)&l dG, (13)
independently. Formulae for these cases, additional

model properties, and proofs for the formulae in the where

following sections can be found ihiebermeister, A . .

2004 dG, = R] dF,+dR] Fy

Let us consider the optimal response to external per-
turbations ofy, wherea changes by a small amount
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The terms contributing to@, describe two effects of  perturbation of the substrate, but not for a perturbation

the perturbationG;, may change the marginal fitness of enzyme parameters.

of y, and it may also change the regulatory properties

expressed byR). The latter happens, for instance, 2.3. Obtaining a change of the output variables

as enzymatic parameters are changed in a metabolic

network. Let us now consider a different scenario where a
While Egs. (13) and (14re a very general result, fixed change g must be obtained by the regulators.

simple consequences can be drawn if the second effectUnder the constraint thatyd= Rydx, the fitness is

is negligible becausé, or R}, is sufficiently small. ~ maximised by

With this simplification, the optimal response reads di — F)&lR,{T(R){F)&lR};T)‘ldy (18)

- T _ T )
d = —(Foc+ Tac+ RY FyyR)™'RY FyyRy do In the isotropic case, this reduces t® & Rfdy,
(14) with the pseudoinverseof R}. If the fitness termi/

. . ) rates the regulators separateRyy is diagonal, and
The symmetric matrix/xx can be formally incorpo- e diagonal element&Fy)ii appear as weights in the

rated into an effective fitness curvatuig = Fx + formula: a large negative curvature leads to a weak
Tx. Note that only the second derivatives of the fitness response of the respective regulatr. &For reasons of

appear in the formula, because the first derivatives are consistenceEq. (18)must also hold for any optimal
initially balanced (se&q. (12). _ response d = dy —dj after a perturbationsad Thus,
Instead of being neglected, the second term in \ye optain the important result that for isotropit,
Eq. (14)can also be incorporated into the first one. gny ontimal expression profile is a linear combination
This is possible if the normalised response coeffi- regulatory profiles, that is, the rows &. On the
cientsxi/yi(R3)ik, which describe relative influences, ey hand, ify must keep its original value despite a
remain constant, because then perturbation d, the actual chang®&}dx + R}, do has
. . to vanish, so we setyd= —R), do.
Tk = % ary — dgdy da) R (19) .
ik Vi 2.4. Adaptation to a perturbation of individual
The symbol dgy) denotes a diagonal matrix with the  regulators
elements of the vector in its diagonal.

The last term oEq. (14)can be rewritten as Besides perturbations of the output variabjesve
r 1 can study perturbations of individual regulatatsin
Ry dg(Fy)dg(y) = dy (16) the case of gene expression, such perturbations may

be realised by gene deletiofdughes et al., 2000)

or RNA interferencgFire, 1999) or may result from

hereditary enzyme deficiencies. In the model, one
A T 1 T in regulator is moved away from the local optimum

dGyx = Ry (Fyy) +dg(Fy) dg(y)"dy = Ry Fy, dy of the fitness landscapé (x, ), and the others can

(7) compensate for the loss. Let us assume that regu-

lator x; is changei by a fixed value d;, that is,

and be incorporated into the first term: bearing in mind
that F, = Fyy dy, we obtain

So effectively the second term has disappeared,
while Fj contains an additional contribution ———— _ _ _ -
w Proof: The optimal & is determined by the conditiof(x +

dg(Fy)dg(»)~1. Is it a reasonable assumption that gz y + dy) = max with the constraink’ dx = dy, which can be
normalised response coefficients are not affected by solved using Lagrangian multipliers.

perturbations? For a linear reaction chain with lin- ° The pseudoinverse of a matrid is defined asA* =
ear kinetics, the normalised response coefficients do (4'4) A"

. . 4 Alternatively, the perturbation can be modelled as a marginal
indeed not depend on the substrate concentrationg, . change @, — Fysdj due to an additional parametgr

(Heinrich et al., 1996)while they do depend on the i, the fitnessG (x, o, #). The optimal response then reads =
enzyme parameters. Thus, the assumption holds for a—GdG,.
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Fig. 3. Interplay between regulators in the fitness landsdape «) for fixed environmentx. Left: The fitnessG with respect to two

genesx; and xz has elliptic contour lines, with the optimum in the centre (A). Constrainindo a smaller value (dashed line) would
decrease the fitness (B). An activation.ef damps the fitness loss (C). The fitness landscape shown may result from a gene duplication:

if both genes exert the same influence ymand if Fyx = 0, then the maximum of the fithess (diagonal contour lines) is non-unique. A

finite term Fy regularises the effective fitness functiéh(i.e., it causes all eigenvalues Gf to be nonzero), which leads to the elliptic

contour lines. The ternfy can be caused by a nonlinear effect in the cost t&itr): for example, it might be more costly to synthesise

two isoenzymes than to synthesise one enzyme with a given function. Right: Cooperation can be induced by second-order response terms
Rix contributing to .. If genesx; and x, are both necessary for the same process, they tend to be coregulated.

di = (0---0di;0--- 0)7. The systemic response pensating for each other should show phylogenetic

of the other regulators readtds anti-correlation(Morett et al., 2003)
dx = G;xl;l dx 19) 2.5. Symmetric compensation of deletions
(Gxii
The small perturbation of a single gene leads to a L€t us consider a deletion experiment in which, in
fitness loss theith sample, gene; (logarithmic expression value)
A is downregulated by x]. According toEq. (19) the

2 1.7 1 dwp)? expression matri¥X with the experiments in the rows

d°G = —dx’ Gydx = = ——— (20) P Xp
2 2 (Gdii should be be decomposable into

_ -1
Small diagonal elements ai! imply large fitness X=GCuD (21)
losses and may indicate essential genes. where D is diagonal. The symmetry a5} implies
Depending on the curvatures of the effective fithess 3 symmetric relation between the genes: if the loss
landscape, gene pairs will either show coregulation or of gene A leads to an activation of gens, gene
anti-coregulation as one of the genes is deleted (see4 should also be activated after the loss of géhe
Fig. 3). Both kinds of behaviour are possible even Matrices derived from experimental data according to
for genes exerting the same first-order control, de- gq. (21)were tested for their symmetry (s€g. 4):
scribed byRy. Cooperating genes may also be coreg- |deker et al. (2001)studied deletions of enzymes
ulated on an EVOIUtionary time-scale, by mutations: in the ga|actose pathway The es“rﬁa‘ﬁ G;Xl ac-
if one gene is deleted, a deletion of the second one
may become an advantage. Thus, pairs of cooperat- We adjusted the column and row means of the whole data

ing genes may become visible in phylogenetic profiles set (10910 expression ratios) to zero and chose all available data

(Pellegrini et al., 1999)while pairs of genes com-  to construct a matrix related to the genes GAL1, GAL2, GAL3,
GAL4, GAL7, and GAL10 and the respective knock-out mutants.
We then calculated the difference matdixbetween the respective

5 Proof: The optimal regulatory profilexdhas to fulfil G (x + “+gal” and “-gal” samples and determined a diagonal maidix
dx, o) — A dx = 0, wherea is a Lagrangian multiplier. We expand such that the mean squares for the rowsXaf ! were similar
Gy(x +dx,a) = Gy(x,a) + G dx. As G,(x,a) = 0 for the to those of the columns. To do so, we iteratively normalised
unperturbed state,xd= AGg di. From dt; = di; follows A = the matrix rows by the ratio between the sum of squares within

1/(G;x1)”. columns and within rows.
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GAL1

GAL2

GAL3 E

GAL4 |

GAL7

GAL10

Agall Agal2 Agal3 Agal4 Agal7 Agali0

Fig. 4. Symmetric response to deletions. We studied expression matrices from deletion experiments: the columns correspond to deleted
genes, while the rows correspond to the measurement of the same genes. AccoEting2th) matrices were decomposed into a diagonal

matrix and an estimate of the inverse fitness curvature maigik Symmetry of the reconstructe@,,! was tested for two data sets. Left:

The matrix extracted fronideker et al. (2001shows a strong symmetric part. Right: Matrix extracted frAlghes et al. (2000)The

symmetric part is weak, but significant (see text).

cording toEg. (21)shows a strong symmetric part. 2.6. A cascade of responses distributes the

Hughes et al. (2000)leleted 248 genésof various perturbation

functions: hereG ! shows only weak symmetry. The

reason may be that many genes knocked out were Near a fitness maximum, a regulatory system
transcription factors of various functions, so we can buffers fitness fluctuations, in analogy to le&@dlier’s
expect weak off-diagonal elements @yx. However, principle, and this buffering can be described by a
for metabolic genes, the matrix still contains a signif- cascade of responses. Let us reddj. (13) if the
icant symmetric paft Thus reciprocal compensation marginal effective fitness of the regulators is perturbed
is found within the galactose pathway, but much less by an amount &, the matrixG . describes how this
between different functional subsystems of the cell. It perturbation becomes distributed over the whole sys-
is questionable whether a gene deletion can be treatedtem. If the fitness curvature with respectxids high,

as a small perturbation. In some cases, this may in- that js, if F)&lR)yCT Fyy R} has small absolute eigenval-
deed be the case, notably if the effects of the deletion g5 thenG ! can be expanded into a power series
are sufficiently buffered by the adaptation of other (compareHeinrich, 1985

genes.
_ _ T _ _
Grd = (14 F'RY FyR)1Fg!
- o
7 Some genes were represented by more than one ORF. —1 )" y\n —1
8 Only the 53 genes annotated with an EC number, according - Z(_FXX Rx FWRX) FXX (22)
to KEGG (Kanehisa et al., 2002)vere chosen. Values for which n=0

the estimated error of log ratios exceeded 2 or two times the Th . d ib d £ diff
absolute value were neglected, and variance stabilisgtiner € seres describes superposed responses or diiter-

et al., 2002)was applied to the remaining values. For determining €Nt order: an immediate response to the perturbation,

D, the neglected values were formally set to 0. The symmetry of Which may have unfavourable side-effects, a response
the resulting matrix is weak. To decide whether the symmetric tg these effects, and so on. The complete response rep-
part was still S|gr_1|f|cant, the standar(_i deV|at|on_s of the symmetric resents a systemic compromise between all effects of

and antisymmetric parts (for the “reliable” off-diagonal elements)

were calculated. The ratio of about 1.7 has&alue of about the regl'"ators' _It ha_s to be stressed that _the cascade
0.01, according to a permutation test in which the order of the d0€S not describe time-dependent behaviour. On the

matrix rows was randomised 500 times. other hand, ifFx + Txx is small (Fxx + Txx — 0),
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Eq. (14)yields represent enzyme activitieB. Here the summation
4 ~ R F-1df and connectivity theorems of metabolic control the-
X~ =Ry FyydF,y (23) ory (Heinrich et al., 1996jmply relations between

as it would result from optimising firstyd and then  the optimal regulation patterns and the structure and
dx. kinetics of the metabolic network.

A metabolic system (Heinrich et al., 1996;
Heinrich and Schuster, 1998an be characterised by

3. Control of structured systems the following quantities: the stoichiometric matrix
contains the stoichiometric coefficients, each column
3.1. Coregulation describing one of the reactionk. is a maximal ker-

nel matrix of stationary fluxes, fulfillingN\K = 0. The
. . i : : 0
Let us consider a large number of perturbations ap- Nk matr(|)x L (Rgder, 1988}3 defined bYN = LN,
plied in separate experiments. Coregulation of genes Where N* contains a maximal set of linearly inde-
can be quantified by the linear correlation, that is, the Pe€ndent rows ofV. By relating the concentrations of
the second term iq. (14) describing a perturbation ~ €lasticitiese; = dv;/dS describe how the reaction
of the response coefficients, can be neglected. In this Velocities depend on the metabolite concentrations,
case, a simple relation holds between the optimal reg- in @ linear approximation. Thus, the columns edf

ulation pattern & and the marginal fitness changg,d ~ contain the immediate change in reaction rates, as
the concentration of an independent metabolite is

di = —FglRY dF, (24) changed. The response coefficie®§$ and RY. de-
] ) ] . scribe the linear influence of enzyme concentrations
Given the covariance matrix covFd between the  (regarded as parameters) on steady state quanSities
marginal fitness perturbations gfthe covariance ma-  gnd 7 and can be decomposed into a prodaét =
trix between the responses;deads C’rr (similar for RS). The elasticitiesty describe
the linear influence of the enzyme concentrations on

= _ —1py" 7 y—1
cow(dr) = G Ry COMFy) Ry Gy the reaction rates. Systemic effects of the local per-

= F)&lR){T COV(dFy) R Ft (25) turbation are expressed by the control coefficients
i o andC* describing the change of steady-state concen-
For strong isotropic fitness curvaturéx — —oo), trations or fluxes due to a small parameter change
this becomes, in first order affecting only thekth reaction.
% y! i yRY .
cov(dx) o< R} cov(dF,)R}, (26) « J);-C _ gJ, /op 27)
Uk /9p

In this approximation, two genes are coregulated if
they have strong effects on the same variables, or on
variables with large common marginal fitness fluctua-
tions. Accordingly, (_:ooperatlng enzymes are "k?ly 1o The control coefficients can be calculated by (see
be coregulated, as it was empirically shown for inter- o

. . o . Heinrich et al., 1996
acting proteingGrigoriev, 2001) permanent protein
complexegJansen et al., 2002and subsets of coop- €5 = —L(M%)7IN® where M®=NCeL  (29)
erating enzymegSchuster et al., 2002) ) =14 eCS

aS;/dp
dug /dp

(€5 (28)

3.2. Metabolic systems They fulfil the summation and connectivity theorems
(seeHeinrich et al., 199B0f metabolic control theory
We shall now consider the control of a metabolic ;
system where the variableg represent stationary ( s) (K eL) = (0 0 )
C

) . (30)
fluxes J or concentrationss, while the regulators

—L
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Fig. 5. Optimal regulation of a metabolic model system. We consider a simple network of irreversible reactions (top left box) containing
eight metabolites (shown as rectangles). The metabdiiteSs, Ss, and Sg (shaded) are considered external. Each reacfida catalyzed

by an enzyme (regulatod;. The fitness function depends on the fluxgs J,, and Js, and on the enzyme concentrations. Top right: Each
diagram shows the optimal response to a specific perturbatioh,afz, or Js, respectively. The effect of the adaptation is shown by the
arrows: arrowheads indicate the direction of the immediate flux ch&jgt caused by regulation. The numbers denote the adaptations
dE;, normalised to madE;|) = 1 for each diagram. All enzymes are involved in the systemic response, which counteracts the initial
perturbation. Bottom: In each diagram, one of the enzyligsEs, Eg, Eg (indicated by a thick arrow) is inhibited, that is, constrained

to a lower value. The remaining enzymes adapt themselves and damp the perturbation.

Optimal regulation of metabolic fluxes is illustrated zyme concentrations. The “relevant” fluxés J», and

in Fig. 5 as an example, we consider a simple net- Js are evaluated by a fitness function with the local
work of irreversible reactions, containing 8 metabo- curvature matrixVy; = —1. A function U with equal
lites, four of which are external. Each reactidnis curvaturesUgg = —1 describes the fitness contribu-
catalyzed by an enzyn¥g. A value of one was chosen tion of the enzyme levelg;. The slopes of the fithess
for the elasticity between a reaction and its substrate, do not appear in the formulae and thus need not be
while all other elasticities vanish. The fithess function specified. For illustration, we assume specific external
depends on the fluxes, J2, and Js, and on the en- perturbations that decrease one of the relevant fluxes
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while leaving the others unchanged. We consider the
two scenarios fronsections 2.2 and 2.4he diagrams

in the upper box show the optimal response (accord-
ing to Eq. (14) to a specific perturbation ofy, J2, or

Je, respectively. In each dmgrar_n n the_lower box_, ON€ Forthe proof, we transpose Eg. (31), postmultiply with
of the enzymesty, E3, Eg, Eg is inhibited, that is, K, and apply the summation theorem:

constrained to a lower value. The remaining enzymes = ' '
adapt themselves optimally, according Eg. (19)

For both scenarios, all enzymes respond in a coordi-

(1) If the fitness termV depends only on concen-
trations, the summation theoref¥ K = 0 yields

dE*' K =0 (32)

dE*' K = dST(RYF2RS )" *CSK =0 (33)

nated way: fluxes in the whole system are redirected A similar argument yields &*' ¢’ = 0.

to increase the perturbed flux, and thus to damp the

perturbation.
3.3. Consequences of the metabolic theorems

If the output variables describe metabolic fluxes or

concentrations, then the theorems of metabolic control dE* €L = dJ7 (R} F2 R} )" *C’eL =0

theory Eq. (30) lead to sum rules for the differential
regulation profiles.
We shall now consider the optimal profiles (en-

(2) If the fitness ternV depends only on fluxes, the
connectivity theorem yields the sum rule

dE* L =0 (34)
because
(3%)

Similarly, we obtain &' ¢/ = dE*' and dE*' eCS =
0. These results resemble the statements for opti-

zyme activities or the respective expression values) mal enzyme concentrations derived (Klipp and

to achieve a changeYdof metabolic variables, for
instance & = dY — dY in the presence of a perturba-
tion dY. If the output variablesy describe metabolic

Heinrich, 1999) where the sum of enzyme concen-
trations was kept fixed.
What is the meaning of the above sum rules? The

fluxes or concentrations, then the theorems (30) of firstone, for the control of metabolites, implies that the
metabolic control theory lead to sum rules for the elements of @*T, summed over any stationary flux
differential regulation profiles. In this section, the distribution, vanish. This holds, in particular, for the
regulatory variables are supposed to describe en-sum over any elementary moffechuster et al., 2000)
zyme concentration&;. The elasticity matrixrg is As an example, let us consider the regulation of a
considered invertible, which holds, for instance, if metabolite in an unbranched chain: the stationary flux
each enzyme catalyzes exactly one reaction. Accord-is described byk = (1,1,...,1, 1)7. According to

ing to Eq. (18) the optimal regulation profile & the sum rule, the scaled differential expression values
fulfils in the chain sum to zero:

(5 FeedE = ¢ (RLFZERY )~ tdy > e tFep)i dET = 0

i

(31) (36)

If the costs of different enzymes are independent of
each other and each enzyme catalyzes exactly one redndeed, the most efficient way to accumulate the
action, then bothFge and n,@ are diagonal. In this  metabolite is to activate the upstream enzymes and to
case, &* = (xL)"1Fee dE equals & up to arescal-  inhibit the downstream enzymes.
ing of the individual elements. The first term on the The second rule, for the regulation of fluxes, pre-
right-hand side oEq. (31)is the transposed control dicts dependencies among the regulation patterns of
coefficients matrix: so, like any metabolic flux distri- neighbouring enzymes. If no conservation relations
bution is a linear combination of the columns @f, hold among the metabolited (= I), then theith col-
dE* is a linear combination of control profiles (the umn ofeL describes the reaction elasticities with re-
transposed rows af”). spect to theth metabolite. If the reaction velocities

If the output variables represent either only fluxes or depend only on the concentrations of their own sub-
only concentrations, theRq. (31)leads to sum rules  strates and products, then all elements of the column
for dE*: vanish, except for the reactions of this metabolite. The
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sum ruleEg. (34)yields one linear equation for each 3.5. Predictions for expression profiles
metabolite: if the metabolite participatesimeactions
(subscripted by), then the scaled expression values  The proposed model yields a quantitative relation

dE* for the respective enzymes fulfil between response coefficients, a fithess function, and
o 0 37 the optimal response of regulators to small perturba-
Z Ei &= 37) tions. Unfortunately, at present, we cannot test the

i theory by predicting real gene expression patterns,
In a series of experiments, the expression data of the because only few response coefficients are known for
n enzymes, will be confined to gn — 1)-dimensional appropriate systems, and the fitness function can only
subspace. If a metabolite is involved in two reactions be guessed. Experimental expression values may carry
only, the ratio of the expression valuegdis fixed, considerable measurement errors, and moreover, en-
that is, they are strictly correlated. In an unbranched zyme activities would be better candidate regulators
reaction chain, each metabolite will usually exert a because they determine the cell’s performance more
negative and a positive elasticity on the producing and directly. Expression usually has an effect on activity,
on the consuming reaction, so the changes of enzymebut empirically, the correlation between them may be
expression will all have the same sign and will be weak. For all these reasons, we shall restrict ourselves
strictly correlated. to summarising some qualitative predictions from the
It is sometimes convenient to represent regulators, model.

fluxes, and concentrations by logarithmic values.  Some properties of expression patterns follow from
Then, the control coefficients have to be replaced the model structure without involving optimality, and

by normalised control coefficients df~—1C’dg(J) could also be derived from a linear causal model the
and dgS)~1cSdg(J) (seeHeinrich et al., 199Bin linear response implies linear dose response curves
all formulae of this section. In additionk and L and a linear superposition of different perturbations.
have to be normalised by the stationary fluxes and Asymptotic responses after the onset and after the
concentrations, yielding dd) 1K and dd$)~1L. end of a perturbation, or to perturbations of opposite
sign, are symmetric. Asymptotically, a perturbation is
3.4. Functional modules buffered and distributed by a cascade of responses.

Thus, perturbation may affect subsystems which do

The statistical properties of the response coeffi- notseem directly concerned. For instance, a heat shock
cients reflect the system’s large-scale structure. Let usresponse may be supported by an increase of energy
assume that the cell contains specialised subsystemgroduction(Mensonides et al., 2002)
(Kahn and Westerhoff, 1991such as protein com- Other predictions reflect the relation between func-
plexes or reaction networks maintaining particular tion and expression induced by the optimality as-
metabolic fluxes. In this case, the response coefficientssumption: the response is an appropriate answer to
will assume almost sparse values, concentrated within the perturbation, and is likely to contribute to ho-
functional subsystems (seBchuster and Schuster, moeostasis. Expression patterns reflect the response
1992. For enzymes acting in modules or complexes, coefficients on the relevant variables: Ak and 7,
Eq. (31)has an interesting consequence: a module of are diagonal, differential expression patterns after a
n regulators which affects only: < n of the output perturbation of cell variables are linear combinations
variables will show differential expression that is con- of regulatory profiles. Even if the response coeffi-
fined to anm-dimensional subspace. If the proteins cients are not known, this can be used for qualitative
form complexes and if each protein belongs to one predictions: genes that do not affect the concerned
complex only, the response coefficients matrix can be output variables remain unchanged. Gene products
decomposed into a produBf = R} RS whereR¢ has that always act together are coregulated. Superfluous
a block structure. In this cas&q. (24)implies that gene products are downregulated so that resources
genes acting in the same complex show proportional can be allocated to other, more important processes.
differential expression, that is, their linear correlation These intuitive assertions are qualitatively backed
is +1. by expression data from several experiments (for
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instance,DeRisi et al.,, 1997; Gasch et al., 2000;
Causton et al., 2001 If the genes’ response coef-

273

a metabolite concentration via allosteric control. At
steady state, this concentration, in turn, is a function

ficients on important variables are sparse or almost of all enzyme concentrations in the reaction network.

sparse, they might be reconstructed from expression

profiles using analysis methods like the plaid model
(Lazzeroni and Owen, 2002y independent compo-

nent analysigLiebermeister, 2002)However, such

a decomposition would also be possible for a causal
model if the genes’ regulatory functions were linear
with sparse input weightg?. For metabolic systems,

the model predicts coregulation of genes with a high
control on important fluxes. The chemical reactions
exerting large control on a particular flux or concen-
tration are often localised in a small region of the

A small perturbation d results in a response

dx =1 - w.);R)yC)_l(w)y‘R;z) do (39)
With an appropriate choice
w) = —FglRY Fy (40)

this feedback model realises optimal regulation, that
is, it maximises the fitness for all possible perturba-
tions du (Proof: compareEqgs. (24) and (38) How-

ever, this only holds if the second term in 14, de-
scribing a perturbation of the response coefficients,

metabolic network, so the same should hold for some js neglected. The feedback to a regulator depends on
of the coregulated genes. Quantitative relations to the the regulator’s influencev’, weighted by the fitness
structure and kinetics of the metabolic network were curvatures. An output variable with large negative fit-
described irSection 3.2 ness curvature will send strong feedback signals, a
regulator with large negative fitness curvature will re-
ceive weak signals. So, feedback signals represent the
most important variables and affects the most efficient
regulators. Let us consider again allosteric control in
metabolism: if homoeostasis in metabolism is to be
ensuredEg. (40)predicts feedback from metabolites
Until this point, we studied the optimal behaviour to those reactions exerting a considerable control on
of regulators without considering how it is realised. the metabolite. If the curvatureégy and Fyy are neg-
Biological regulators often receive signals from the ative and the reaction exerts a positive control on the

processes to be regulated: this phenomenon is knownmetabolite, a negative feedback is predicted.
as feedback. Gene expression, for instance, is con-

trolled by transcription factors that provide informa-
tion about the cell status. It is a basic assumption of
the present analysis that during evolution, adaptation  \What quantitative advantage does a regulatory sys-
mechanisms for coping with variable environmental tem mean the organism? To answer this question, we
conditions have developed and can be described byhave to refer to an specific ensemble of external con-
optimality principles. This assumption is now used for  ditions: if the perturbationsadare small and normally
describing feedback systems: the objective is to derive distributed with mearide) = 0 and covariance matrix
a feedback system that realises the optimal behaviourcoy(da) = (da de?), the presence of the regulating
of regulators defined above. system raises the fitness, on average, by

Let us consider a system of interacting regulators
and cell variableg in a stationary environmeut if «
is replaced by + da, then the stationary state values
of x andy exhibit changes (se€ig. 2, left bottom)

4. Implementation and value of regulators

4.1. Optimal control realised by feedback

4.2. The value of regulators

- . 1 4
(G —G) = —ETr(GaxGXX Gxa COV(da)) (41)
As Gy has no positive eigenvalues, the val@e— G)
of the regulatory system is nonnegative. The name
“value” has been chosen in analogy to the value of in-
formation defined in Bayesian decision the@Bearl,
The linear coefficientay represent the partial deriva-  1988) the value of an information source is defined
tives of a (possibly nonlinear) feedback function. For as the average advantage (increase in expected pay-
example, the activity of an enzyme can be affected by off) if signals from the information source can be used

dx = widy

dy = R% dx + R} da (38)
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for the decisions. Evolution is likely to develop reg- tred, the matrix will basically represent the interaction

ulators of high value: if the very presence of a regu- term. According toEq. (19) the optimal response to

latory system involves additional costs, it should only a deletionA%; is Ax = 1/(Ggl)iiGpeAX. Inserting

be maintained if its value exceeds the costs. Like the this into the interaction term from (42) yields the fit-

value of information, which depends on the presence ness loss

of other information sources, the value of regulators 1 R

may be influenced by the presence of other regulators. FA%‘ G GraDa (43)

For instance, adding copies of existing regulators to * > "

the system will not yield much additional fitness. For each gene, this term is proportional to the dif-
ferential expression under the different conditions de-

4.3. Growth of deletion mutants scribed byAw (see Appendix, Eq. (A.4)).

After a change of the environmental conditions,
some gene products may become especially impor- 5. Discussion
tant for surviving. They should be activated, and their
loss by a deletion should have a strong impact on  We have presented a theoretical apparatus for de-
the growth rate, while the loss of a dispensable gene scribing the adaptation of living cells to perturbations
should play a minor role. Thus a relation between of environmental or internal parameters. We have
expression data and the growth rates in deletion ex- made a distinction between regulatory variables and
periments may be hypothesiségiaever et al. (2002)  output variables. Specific examples could be the
studied the growth rate of yeast deletion mutants un- concentrations of gene products (e.g., enzymes) and
der different experimental conditions and compared metabolic fluxes. Accordingly, we have used gene
the results to expression data for the same conditions: expression as a running example. However, the pre-
except for the growth on galactose, their experiments sented theoretical tool is far more general. Moreover,
gave only weak evidence for such a relation, but this it is applicable to systems of any size. A promising
was seen as a surprise. The model of optimal regula- application of our method is the analysis of DNA
tion, though, supports the initial hypothesis, predicting microarray experiments where healthy states are com-
a quantitative relation between the data from expres- pared with perturbed (e.g., diseased) states. However,
sion and deletion experiments. the proposed model is not limited to gene expression:

How should a deletion influence the growth rate un- it may be applied to the design of various regulatory
der different conditions? A small environmental per- systems on different timescales, such as enzyme ki-
turbation A« and a small regulatory changex lead netics, allosteric control, adaptation of receptors, and

to a fithess change even evolution of enzyme properties.
1 The success of the method largely depends on
AG~GIAx+ Gl Aa + E(AxTGXXAx the choice of the fitness function. This is a gen-
r r eral problem in the modelling of optimal properties
+Aa” GyAa + 2Ax" Gy A) of living organisms(Allen, 1999; Heinrich, 1985;

Heinrich et al., 1987)Iin any case, the biological costs

1
=|GIAx+ ZAxTGuA . :
[ Xt 7o x] for the regulatory variables should be taken into ac-

- 1. 4 r count. This can be done (and has been done here) by
+ |:Goz Ao+ A GaA“:| + Ax" GraAa including, in the fithess function, a negative term ex-
(42) pressing these costs. In unbranched enzymatic chains,

equating the fitness function with the metabolic flux
The fitness change consists of three terms, one causedninus a linear combination of enzyme concentrations
by the deletion, one due to the changed conditions, andis a reasonable choid®eich, 1983) In either case,
one representing the interaction between both effects, biological behaviour is regarded as the solution to an
which should manifest themselves in the data matrix. economical problenfReich, 1983)namely to choose
If the rows and columns of the data matrix are cen- an optimal compromise between possible actions
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which maximises a utility functior{Henderson and  organism’s fitness under typical evolutionary condi-
Quandt, 1980)A related optimisation problem also tions by exerting its function. The behaviour ofle-
appears in biotechnology, namely to increase the pends on a dual variable, namely the marginal fithess
yield of a metabolite by the modification of single G, = V.G = F, + FyR,y(, which has to remain zero
genes: the costs depend on the number of genes to balespite any perturbation. The marginal fitness reflects
engineered, so only th genes which exert the highestthe response coefficients, so during evolutionary learn-
control on the respective metabolite will be modified. ing, information about the functional structure of the
On the contrary, the present model, in which the num- cell becomes implicitly stored in the regulatory sys-
ber of responding genes does not play a role, claims tem. This information can be read by probing the regu-
that all genes should be adapted, but those with the latory system with perturbations, or by measurements
highest control should be adapted most strongly. of biological fluctuations.

Considering small perturbations has allowed us to  An example of this structure—function relation are
use differential calculus. As has been shown earlier operons, where sets of cooperating genes are con-
in Metabolic Control Analysis, the large changes oc- trolled by the same transcriptional machinery, thus
curring in biological systems can, in many cases, be functional relations are portrayed qualitatively by the
described by linearly extrapolating small changes; in regulatory structure. Another example can be found in
other cases, they cannot. Here, we included first-order the regulation of amino acid synthesis: the aspartate
and second-order terms. However, for deriving sim- kinase is the first enzyme in the pathway for the syn-
ple predictions, we neglected second-order terms in thesis of threonine, isoleucine, lysine, and methionine.
the fitness coupling.dand dy, and also second-order The three isoenzymes AspKIl, AspKIl, and AspKIll re-

terms iny(x, a) which couple & and db. ceive negative feedback signals from the amino acids,
thus “portraying” the strong control of aspartate kinase
5.1. Structure—function relation of regulators on amino acid levels. This pattern of regulation even

appears on two levels of regulation, as the feedback

An interesting result is that optimal regulatory pro- signals are realised by both allosteric inhibition and re-
files tend to portray aspects of the system to be reg- pression of gene expression (d¢@mgeler etal., 1999
ulated. The regulators’ response reflects the functions
of the regulators, that is, their influence on relevant 5.2. Validity of the optimality assumption
variables, as well as the local shape of the fitness
landscape. If the fitness function is isotropic with re-  When expression data are published, authors often
spect to the regulators, the differential expression pat- relate expression patterns to biological purpose, that
tern is a linear combination of regulatory profiles, i.e., is, the function of the genes being up- or downregu-
rows of the response coefficients matrix. As an impor- lated. Our model is meant to formalise such assertions
tant example, we have analysed metabolic systems:by deriving them from explicit assumptions, in order
among other things, we have derived a sum rule for to find out what can be predicted from an optimality
the enzymes within metabolic flux modes (metabolic principle alone. However, it is not clear to which ex-
pathways), and a relation between enzymes that cat-tent biological regulators realise an optimal behaviour.
alyze the reactions of a metabolite. In both cases, we Segré et al. (2002jound evidence for non-optimal
have used the summation and connectivity theorems adaptation of metabolic fluxes after gene deletions in
of Metabolic Control Analysis. E. coli, but their ansatz for the fitness function does

A convenient way of self-regulation of biological not account for costs of the expression machinery, so
systems is by feedback. We have applied our method it cannot be compared directly to the approach of this
to feedback systems and have obtained the result thatwork. Experiment¢Hughes et al., 2000; Giaever et al.,
also optimal feedback signals reflect the function of 2002)have shown that gene deletions can increase the
regulators. Thus the proposed model predicts a gen-growth rate of yeast. According to our theory, the cell
eral relation between a gene’s function, its optimal would anticipate any possible advantageous deletion
expression behaviour, and its regulatory program. In by downregulating the respective genes, so no further
this framework, the task of a gene is to maximise the increase would be possible. The present theory may
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fail h.ere.for vfa\ri_ous reasons: either no steady-state g7 — FyRy, da

function is optimised by the cells, or the growth rate

is npt the (only) (_)ptlmlsanon targ_et. Moreover, the ex- dﬁy = Fnyg;da

perimental conditions possibly did not reflect the typ-

ical environment during evolution, or the deletion had The optimal responsexdmust ensure that@, van-
side effects that could not be achieved by a change inishes, so

expression alone.

One cannot hope to deduce all biological behaviour dx = _G>_<xl(Gm da) (A-4)
from optimality principles, and it is an open question .
in which cases optimality assumptions are valid. At with
least, two conditions §hould pe m(_et: the ex.pleriment Gyx = Fix + Tx + R)yCTFny)yC + FyR)
must probe the cell with physiological conditions to T
which the system has accustomed during evolution, + (FxyRx) (A.5)

and for our analysis, the perturbations must be small. _ 7 y y
:  th Pat Gru = R} FyR) + FyRYy + T,

In fact, if a regulator is only indirectly concerned, ¢~ T "R T YR S
it will experience an effective perturbation that has Th ; _ VNl _

© e matrices(T, = (F)1(Rx);, and (T, =
already been sufficiently buffered by the other regula- (Tadik = (Fy)i(Rudi (Tiali
tors, and then even a large or unphysiological perturba-
tion like a gene deletion may be described by a linear
theory.

(Fy)i(Ry)!, are calculated from the tensoRg, and

R}, containing the second derivatives ofx, o).

We assume thaGy has negative eigenvalues, so it

is invertible. Rewriting the term in brackets from

Eq. (A.4)
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Thus, the regulators react to the three effects (see
Appendix A. Optimal response Eq. (A.3) of the perturbation. For simplicity, we as-
sume thatF(x, y) = U(x) + V(y) implying Fyy, = 0,
We consider an effective fitne€s(x, o) = F(x, y so dry = 0. This yields
(x, @)) and expands, = V.G (x, @) to first order ;
d¥ = —(Fx + T+ R) FyyR) ™!

Gy(x +dr, o +d PR
el dv ot de) « (R dF, +dRY" Fy) (A.8)

R Gy(x, o) + Gux(x, @) dx + Gro(x, @) da (A1)

The total differential reads
Appendix B. Symbols used

dG, =G, (x +dx, a + do) — G, (x, @)

=G dx + Gy do (A.2) X Regulatory variables Vector
An optimal initial state withG(x, ) = 0 becomes « Environmental variables Vector
X, ) = :
perturbed by d. Without respogse d, this implies three J (x;’ ) Regulated vanap I.es Vectqr
' ' (R)ik = dy;0x; Response coefficients Matrix
changes Yk i
(Rop)il Second-order response  Tensor

dR) = R}, da (A.3) coefficients w.r.ta andb
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Appendix B (Continued)

F(x, y) Fitness function Scalar
F.=V,.F Marginal fithess ofc  Vector
Fy,=V,F Marginal fitness ofy ~ Vector
G(x,a) Effective fithess scalar
= F(x, y(x, o))
G,=V,G Effective marginal Vector
fitness ofx
(Gxik Effective fitness Matrix
= 92G/(dx;dx)  curvature
Tab = FI R}, Effective fitness Matrix
curvature due to
second-order response
do Perturbation ofx \ector
dx Optimal response of Vector
R, Feedback coefficients  Matrix
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