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Introduction

The vast amount of gene expression data nowadays at hand offers the possibility to learn the genetic
networks of the organisms by theoretical methods. For gene expression time series data dynamical
modelling of the genetic network with differential equations is a natural way. Learning the network then
means finding those parameters of the differential equations that encode the network structure. But
parameter estimation is in most cases the limiting step in modelling of non-linear systems. Parameters
might not be identifiable or are unreliable because the data is too scarce. Uncertaintites in parameters
entail not only quantitative but also qualitative uncertainty in the system’s behaviour. For this reason
we change standpoint and explore for a small genetic network to what extent the structure itself
determines the system’s behaviour.

Approach

The presented approach is to assume that the parameters are not fixed or estimated, but drawn from
a distribution, which has to be specified [6] [7]. This parameter distribution, together with the fixed
network structure, leads to distributions of the observables. Repeated simulations of the model, with
parameters drawn from their distributions, will yield many realisations of the dynamic profiles and
observable quantities of the system. If the distribution of a quantity is sharp, we conclude that this
quantity is strongly determined by the network structure, at least for the ensemble of parameters
considered. This allows to study which kind of quantitative and qualitative behaviour can be expected
from the model.

Monte Carlo simulations with random parameters have been used to compute the distributions of
metabolic concentrations, metabolic fluxes, control coefficients, and other variables [6] [2]. The same
approach has been applied to gene regulatory circuits [5] and a MAP kinase cascade [3]. Here we focus
on another feature of dynamic systems, namely the location of a bifurcation point. We study a simple
genetic network as has been analysed by Elowitz and Leibler [4]. It shows a parameter-dependent
transition from a stable steady state to stable oscillations, known as a Hopf bifurcation. The Hill
coefficient in the kinetic equations is a critical parameter. By sampling all other parameters from
predefined distributions, we compute the distribution of the critical value.

Dynamical network model

The type of network considered here consists of N genes. The simplification made is that mRNA and
protein concentrations are merged into a single quantity. For each gene there is a production and a
degradation term. The interaction among the genes via their respective products makes the production
term a Hill kinetic:

dxi

dt
= −αixi +

βi
∏N

j=1(1 + (
xj

kij
)hij)

where xi is the concentration of mRNA of gene i, αi is the degradation constant of the mRNA of gene
i, βi is the full strength of the promoter of gene i, and kij and hij are the dissociation constant and
Hill coefficient for the binding of the product of gene j to the promoter of gene i. The sign of hij

determines the type of interaction, i.e. activation or inhibition.

The repressilator
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The repressilator [4] is a network of three genes forming a negative-feedback loop. The results presented
here are from an analysis of the symmetric repressilator, i.e. αi = α, βi = β, kij = k and hij = h.
Thus the model equation are as follows:

dx1

dt
= −αx1 +

β

1 + (x3

k
)h
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dt
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β

1 + (x1

k
)h

dx3

dt
= −αx3 +

β

1 + (x2

k
)h

Bifurcation

Given values for α, β, and k, this system can show a Hopf
bifurcation at a certain value h = hcrit(α, β, k): for values
h < hcrit, the system has a stable steady state, while for
h > hcrit, the steady state becomes unstable and a stable
limit cycle shows up. For the values α = 0.001, β = 0.5,
k = 100, we find hcrit ≈ 2.78. The figure below shows the
two behaviours of the symmetric repressilator for h = 1 <

hcrit and h = 4 > hcrit.
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Parameter sampling and bifurcation analysis

The parameters α, β, and k were drawn from log-normal distributions such that log10 α, log10 β, and log10 k

are independent and normally distributed with a standard deviation of σ and mean values ᾱ = 0.001, β̄ = 0.5,
and k̄ = 100, respectively. We performed 10000 simulations for distributions with widths σ = 0.01 and σ = 0.2.
By drawing a set of parameters, each time we obtain a realisation of the dynamic system in which the Hill
coefficient h is still undetermined. For each realisation we run a bifurcation analysis to determine the critical
value hcrit(α, β, k) of the Hill coefficient. By repeating the drawing from the parameter distributions, we can
sample the distribution of critical Hill coefficients. The critical parameter h = hcrit(α, β, k) was determined using
MATLAB with the package MATCONT [1] and searching at least the interval from 1 to 50.

Results

For a parameter width σ = 0.01 we were always able to determine the bifurcation points. In 104 simulations, no
critical value lower than ∼ 2.68 was found. For a parameter width σ = 0.2 we found a bifurcation point in 9779
out of 104 simulations.
We find positive correlation values for α and k, respectively, while β is negatively correlated with hcrit. This
shows that a lower damping (small α) and a stronger coupling (high β or low k) between genes makes the system
more prone to oscillations.
The qualitative behaviour of the cycle does not depend on the absolute scaling of time and concentration. This
implies that hcrit can only depend the linear combination lnα − lnβ + lnk which is confirmed by our simulation
results.
The two figures below show histograms for α, β, k and hcrit, and correlation plots for the three parameters
α, β, k and the linear combination lnα − lnβ + lnk versus hcrit. In the left figure the distribution width is
σ = 0.01, in the right one σ = 0.2.
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Summary

Parameter estimation for complex dynamic models is a challenge in current systems biology. To study the potential
dynamic behaviour of a given model with uncertain parameters, we use a Monte-Carlo sampling approach. We
draw the parameters from a distribution and observe the distribution of the variables in the simulated system.
In the example model describing a small genetic network, the incidence of a Hopf bifurcation (a qualitative
trait) and the distribution of the critical values of the Hill coefficient, at which the Hopf bifurcation occurs (a
quantitative measure), have been determined. We may also ask a slightly different question: if all parameters
(including the Hill coefficients) are drawn from distributions, what is the probability for the system to oscillate?
Given our distribution of hcrit, this can be easily answered by sampling h and hcrit independently from their
distributions and counting how often h > crit .
The presented analysis can be considered as first step towards a thoroughly parameterized model. It gives hints,
which types of qualitative behaviour can be expected at all and at which parameter combination. It enrolls which
parameter values have a strong influence on the dynamics, which points points to parts of the model where exact
measurements are necessary or where fluctuations are important or nonrelevant.
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