

Analyse der optimalen differentiellen Genexpression

Wolfram Liebermeister

13. Januar 2004

Humboldt-Universität zu Berlin Theoretische Biophysik

Genexpression

Microarraydaten

log₂ diff. Expression -Glukose/+Glukose

Daten aus

J.L. DeRisi et al. (1997), *Exploring the metabolic and genetic* control of gene expression on a genomic scale, Science 278

Zielstellung meiner Arbeit

• Datenanalyse mit statistischen Modellen

Globale Moden in Microarraydaten als additive Faktoren Koexpression z.B. bei Proteinkomplexen und im Stoffwechsel

• Problem:

Theoretische Erklärung für die Beziehung zwischen Expression und Funktion?

• Vorhersage von Expressionsprofilen

Expression dient der Steuerung der Proteinmenge Komplexe Steuerung: viele Gene, viele Zellprozesse Welche Korrelationen sind in Expressionsdaten zu erwarten? **Ziel**: Allgemeine Beziehungen für große Zellmodelle

Ein Modell für optimale Genexpressionsmuster

Das Modell soll

- 1. optimale differentielle Expression vorhersagen
- 2. die koordinierte Expression vieler Gene beschreiben
- 3. die korrelierte Expression im Stoffwechsel erklären

Modellannahmen

- 1. Differentielle Expression dient der optimalen Kontrolle von Zellprozessen
- 2. Modell der Zellprozesse mit stabilem stationären Zustand
- 3. Optimalität bedeutet: Maximierung einer Zielfunktion ("Zellfitness")
- 4. Gene mit komplexen Effekten: Kompromiss zwischen Nutzen und Kosten für alle Gene
- 5. Differentielle Störungen \Rightarrow lokale Näherung

Das Modell

Das Optimalitätsprinzip:

Die Expressionswerte x_i maximieren die Fitness $F(x, y(x, \alpha))$

Das Modell

Effektive Fitness

 $G(x, \alpha) = F(x, y(x, \alpha))$

Das Modell

Differentielle Störung d $\hat{\alpha} \rightarrow$ Differentielle Expression d \bar{x}

Optimale differentielle Expression

Responsekoeffizienten $R_x^y = \frac{\partial y}{\partial x}, R_\alpha^y = \frac{\partial y}{\partial \alpha}$ Ableitungen der Fitness $F_x, F_{xx}, F_{yy}, G_x, G_{xx}, G_{x\alpha}$ **Optimalitätsbedingung** $d\bar{G}_x = 0$ Differentielles Expressionsprofil $d\bar{x} = -G_{xx}^{-1} G_{x\alpha} d\hat{\alpha}$ Vereinfachende Annahme $F(x, y) = V(y) + U_1(x_1) + U_2(x_2) + \dots$ Expression als Reaktion auf d \hat{y} und d \hat{R}_x^y $d\bar{x} = -(G_{xx}^{-1} R_x^{y^T} F_{yy}) d\hat{y} - (G_{xx}^{-1} F_y^T) d\hat{R}_x^y$

Drei Anwendungen

1. Optimale Feedbacksteuerung

Wie müssen Gene auf Zellvariablen reagieren, damit optimale Expressionsmuster entstehen?

2. Expressionsmuster und Responsekoeffizienten

Wie läßt sich die korrelierte Expression im Stoffwechsel erklären?

3. Kompensation von Gendeletionen

Wie sollen die Expressionsmuster nach der Deletion einzelner Gene aussehen?

(1) Optimale Feedbacksteuerung

(2) Expression im Stoffwechsel

• Stoffwechsel: Topologie vs. Funktion

Topologische Beschreibung durch Stoffwechselwege? Responsekoeffizienten ⇒ globale Wirkung eines Enzyms Responsekoeffizienten spiegeln die Netzstruktur wider

• Optimalität führt zu Koregulation

Teilprobleme:

- 1. Genexpression \leftarrow Responsekoeffizienten
- 2. Responsekoeffizienten \Leftrightarrow Stoffwechselnetz

⇒ **Summenregeln** für korrelierte Expression von benachbarten Reaktionen und auf stationären Flussmoden

(2) Lineare Überlagerung von Responsekoeffizienten

Optimales Expressionsprofil für gegebene Änderung d*y*:

$$\mathrm{d}\bar{x} = F_{xx}^{-1} \ R_x^{y^T} \ (R_x^y \ F_{xx}^{-1} \ R_x^{y^T})^{-1} \ \mathrm{d}y$$

Annahme Fitnesskrümmungen aller Gene gleich

Optimales Expressionsprofil

$$d\bar{x} = R_x^{y_1^T} dM$$

= $R_x^{y_1^T} dm_1 + R_x^{y_2^T} dm_2 + \dots$

⇒ Strukturen in Responsekoeffizienten können sich auf Expressionsprofile übertragen

(2) Summenregel 1: Benachbarte Reaktionen

Annahmen:

- Nur Reaktionsgeschwindigkeiten werden reguliert
- Keine Erhaltungsbeziehung zwischen Metaboliten

Summenregel

 $\mathsf{d}\bar{x}^T\epsilon L=0$

aus dem Konnektivitätstheorem

Rings um einen Metaboliten gilt

 $\epsilon_1 \, \mathsf{d}\bar{x}_1 + \epsilon_2 \, \mathsf{d}\bar{x}_2 + \epsilon_3 \, \mathsf{d}\bar{x}_3 + \ldots = 0$

Lineare Reaktionskette: Differentielle Expressionswerte sind proportional

(2) Summenregel 2: Reaktionen entlang Flußmoden

Annahmen:

• Nur Stoffkonzentrationen werden reguliert

Summenregel $d\bar{x}^T K = 0$ aus dem Summationstheorem

Auf stationärem Flussmodus gilt $d\bar{x}_1 + d\bar{x}_2 + d\bar{x}_3 + ... = 0$

Lineare Reaktionskette:

Gegenläufige Steuerung

Zur Erhöhung einer Konzentration wird die Enzymaktivität oberhalb des Metaboliten erhöht, unterhalb gehemmt.

(3) Kompensation von Gendeletionen

(3) Kompensation von Gendeletionen

In beiden Fällen: Symmetrisches Verhalten der Gene

(3) Kompensation von Gendeletionen

Modellvorhersage

für Expressionsmatrix \boldsymbol{X} nach Deletionen

$$X = G_{xx}^{-1} D$$

 G_{xx}^{-1} ist symmetrisch, D ist diagonal.

Daten: + Galaktose/ - Galaktose

T. Ideker et al. (1997), Integrated Genomic and proteomic analyses of a systematically perturbed metabolic network, Science 292

Zusammenfassung

Ansatz

- Optimalitätsannahme \Rightarrow differentielle Expressionsprofile
- Koordination vieler Gene mit komplexen Wirkungen
- lokale Näherung \Rightarrow allgemeine Vorhersagen

Ergebnisse

- Optimale differentielle Expressionsmuster
- Regulation von Genen repräsentiert u.A. deren Funktion
- Korrelierte Expression von Stoffwechselenzymen
- Symmetrische Antwort auf Deletionen

Analyse der optimalen differentiellen Genexpression

Wolfram Liebermeister

13. Januar 2004

Humboldt-Universität zu Berlin Theoretische Biophysik

Metabolische Kontrollkoeffizienten

 $R_i^{Ethanol}$ für Ethanol, basierend auf Hefe-Netz aus KEGG

Analyse von multivariaten Expressionsdaten

Clustering

Lineares Modell (ICA)

Lineare Modelle

 $X = S \times Y + \eta$

Independent component analysis (ICA)

ICA

A. Wahre Komponenten C. Kovarianz E. Auffällige RandverteilungenB. Künstliche Daten D. Entkorrelieren F. Rekonstruierte Komponenten

Nichtlineare ICA (Zellstress-Daten)

Nichtlineare Komponenten in Zellstress-Daten Gasch et al.

Nichtlineare ICA (Zellstress-Daten)

Zellstress-Daten Gasch et al.

Nichtlineare ICA (Zellstress-Daten)

Expression und Fitnessverlust nach Deletionen

Interaktion Deletion/Medium

$$\mathsf{d}x^T G_{x\alpha} \mathsf{d}\alpha = \frac{\mathsf{d}\hat{x}_i^T}{(G_{xx}^{-1})_{ii}} G_{xx}^{-1} G_{x\alpha} \mathsf{d}\alpha$$

Diff. Expression ohne Deletion

$$\mathrm{d}\bar{x}=-G_{xx}^{-1}G_{x\alpha}\mathrm{d}\alpha$$

G. Giaever et al. (2002),

Functional profiling of the Saccharomyces cerevisiae genome, Nature 418

"The fact that such a small percentage of the genes that exhibit a significant increase in expression also exhibit a significant fitness defect was unexpected and warrants closer inspection."

- Vergleich von Expressionsdaten und Kontrollkoeffizienten
- Maß für Ähnlichkeit: Winkel zwischen den Räumen der ersten Hauptkomponenten
- p-Werte aus Permutationstest

Verteilung der p-Werte

Schwarz: Kumulative Verteilungen der p-Werte Rot: Ergebnis unter Nullhypothese (Permutationstest) Daten: Hefe-Zellzyklus, Spellman et al. 1998

Galaktoseabau und obere Glycolyse (Wachstum auf Galaktose)

+ Glykolyse, - Nukleotidsynthese

Aminosäuresynthese

Prolinweg

Aminosäuresynthese

Nukleotidsynthese

+ Zitratzyklus, - Glykolyse - Nukleotidsynthese

Zitratzyklus

Reaktion auf Minimalmedium (- Aminosäuren,- Stickstoff)

Ähnlich dem environmental stress response cluster (Gasch et al., 2000)